Kingdom of Saudi Arabia Ministry of Education King Khalid University

College of Engineering

Mechanical Engineering Department

المملكة العربية السعودية وزارة التعليم جامعة الملكخالد كــلية الـهـندسة قسم الهندسة الميكانيكية

جامعة الملك خالد

جامعة الملك خالد كلية الهندسة قسم الهندسة الميكانيكية

جدول الخطة الدراسية

لبرنامج بكالوريوس العلوم في الهندسة الميكانيكية

اصدار 12 1445

جدول الخطة الدراسية

Distribution of courses over the different levels Bashlor of Science in Mechanical Engineering (Edition 12)

Course Code	Course Title		Weekly Distribution of Credit Hours Prerequis			•	
Course Code	Course Title	Lecture s	Lab	Credit Hours	Contact Hour		
					First Y	ear - First Level	
011ENG-6	Intensive English Program-1	-	6	6	12		
107 CHEM- 4	General Chemistry	3	1	4	5		
119 MATH-3	Differentiation and Integration-1	3	-	3	3		
111 ICl-2	The Entrance to the Islamic Culture	2	-	2	2		
201ARAB-2	Language Skills	2	-	2	2		
	Total Number of Hours	10	7	17	24		
				F	irst Year	- Second Level	
012 ENG-6	Intensive English Program-2	-	6	6	12	011ENG-6	
103 CMS-3	Computer Science	2	1	3	4		
219 MATH-3	Differentiation and Integration-2	3	-	3	3	119 MATH-3	
129 PHYS-4	Physics-1	3	1	4	5		
112 IC1-2	Islamic Culture-2	2	-	2	2		
	Total Number of Hours	9	8	18	26		
				Se	econd Ye	ar – Third Level	
111-GE-3	Engineering Drawing	-	3	3	6		
211-ME-3	Material Science	2	1	3	4	129 PHYS-4 107 CHEM- 4	
212-ME-2	Engineering Mechanics (statics)	2	-	2	2		
211 GE-2	Learning skills	2	-	2	2		
219 PHYS-4	Physics-2	3	1	4	5	129 HYS-4	
229 MATH- 3	Differentiation and Integration-3	3	-	3	3	219 MATH-3	
	Total Number of Hours	12	5	17	22		
				Sec	ond Yea	r – Fourth Level	
221-ME-3	Production Technology and Workshop	1	2	3	5	111-GE-3	
222-ME-3	Thermodynamics-1	2	1	3	4	129 PHYS-4 119 MATH-3	
223-ME-3	Strength of Materials & Testing	2	1	3	4	211-ME-3	
221-GE-2	Creativity and Innovation	2	1	2	2		
202 ARAB- 2	Arabic Writing	2	1	2	2		
222-GE-2	Engineering Programming	1	1	2	3	103CMS-3	
319 MATH- 3	Differential Equations	3	-	3	3	219 MATH-3	
	Total Number of Hours	13	5	18	23		
						ear – Fifth Level	
311-ME-3	Metal Cutting Processes	2	1	3	4	211-ME-3	

221-ME-3						
111-GE-3	5	3	2	1	Mechanical Engineering Drawing	312-ME-3
	2	2	-	2	Engineering Mechanics (dynamics)	313-ME-2
129 PHYS-4 119 MATH-3	4	3	1	2	Electric Engineering-1	218 EE-3
	2	2	-	2	Islamic Culture-3	113 IC1-2
	3	3	-	3	Linear Algebra	329 MATH- 3
012 ENG-6	2	2	-	2	Technical Reports Writing	301 NGL-2
	22	18	4	14	Total Number of Hours	
ar – Sixth Level	Third Ye					
212-ME-2 313-ME-2	4	3	1	2	Theory of Machines	321-ME-3
222-ME-3	4	3	1	2	Fluid Mechanics	322-ME-3
218 EE-3	4	3	1	2	Electric Engineering-2	328-EE-3
319 MATH- 3	3	3	-	3	Numerical Methods	419 MATH-3
	2	2	-	2	Principles of Statistics and Probability	329 STAT-2
	2	2	-	2	Islamic Culture-4	114 IC1-2
	19	16	3	13	Total Number of Hours	
nmer Internship	Sum					
Completion of 95	0	0	0	0	Summer Internship	400 ME-0
credit hours			U	0	Summer mernamp	400 WIL-0
-Seventh Level	urth Year	Fοι				
223-ME-3 312-ME-3	4	3	1	2	Machine Elements Design-1	411-ME-3
211-ME-3		-				
221-ME-3	4	3	1	2	Metal Forming Processes	412-ME-3
322-ME-3	4	3	1	2	Heat Transfer	413-ME-3
321-ME-3	3	2	1	1	Measuring Devices	414-ME-2
	2	2	-	2	Professional Ethics and practice	411-GE-2
	3	3	-	3	Free course- 1	xxx
	20	16	4	12	Total Number of Hours	
r– Eighth Level	ourth Yea	Fo				
411-ME-3	4	3	1	2	Machine Design	421-ME-3
222-ME-3	4	3	1	2	Thermodynamics-2	422-ME-3
322-ME-3	4	3	1	2	Hydraulic Machines & Fluid Power Systems	423-ME-3
321-ME-3 319 MATH- 3	4	3	1	2	System Dynamics & Mechanical Vibrations	424-ME-3
	2	2	-	2	Engineering Economy	311-INE-2
	2	2	-	2	Elective-1	
	20	16	4	12	Total Number of Hours	
ear–Ninth Level	Fifth Ye					
Completion of 125 credit hours	4	4	-	4	Senior Design Project	573-ME-4
424-ME-3	4	3	1	2	Control Systems	511-ME-3
	2	2	-	2	Engineering Entrepreneurship	511-GE-2
		3			Elective -2	

	Elective -3			3		
XXX	Free course-2	2	-	2	2	
	Total Number of Hours			16		
					Fifth Ye	ear-Tenth Level
411-INE-2	Engineering Managements	2	-	2	2	
	Elective-4			3		
	Elective-5			3		
	Total Number of Hours			8		

Elective courses

Elective courses (2), (3), (4) and (5) are selected according to the following:

1 - Students interested in power engineering path: choose the courses of power engineering path only from the list of elective courses

2 - Students interested in engineering design and production path: Choose the courses of engineering design and production path only from the list of elective courses

3 - Students interested in general path: choose elective courses without follow any path

		Weekly Distribution of Credit Hours Prerequi				
Course Code	Course Title	Lectures	Lectures Lab Credit Contact Hours Hour			
					First Yea	r - First Level
321 GE-2	Knowledge Management	2	-	2	2	
322 GE-2	Design Thinking	2	-	2	2	
323 GE-2	System Dynamics	2	-	2	2	

List of Elective course -1

List of Elective courses	(2), (3), (4) and (5)

Deth	Course	Course Title			-	istribution edit Hours	Duouseuisites
Path	Code Course Title		Lectures	Lab	Credit Hours	Contact Hour	Prerequisites
	531-ME-3	Internal Combustion Engines	2	1	3	4	413-ME-3
Damag	532-ME-3	Energy Conversion	3	-	3	3	422-ME-3
Power	533-ME-3	Power Plants	2	1	3	4	413-ME-3
Engine ering	541-ME-3	Energy Efficient Buildings.	3	-	3	3	413-ME-3
ering	542-ME-3	Desalination	3	-	3	3	422-ME-3
	543-ME-3	Refrigeration and Air Conditioning	2	1	3	4	413-ME-3
Design	534-ME-3	Computer Aided Manufacturing	2	1	3	4	311-ME-3
and	535-ME-3	Mechanical Behavior of Materials	2	1	3	4	211-ME-3
Produc	536-ME-3	Composite Material	3	-	3	3	211-ME-3
tion	544-ME-3	Fundamentals of Heat Treatment	2	1	3	4	211-ME-3

Engine ering	545-ME-3	Finite Element Analysis in Mechanical Design	1	2	3	5	421-ME-3 419 MATH-3
_	546-ME-3	Nano technology	3	-	3	3	211-ME-3

Course Title	Engineering Drawing	Coordinator		
Course Code	111-GE-3	Credit Hrs.	3	Contact Hrs.
Prerequisites	NA	Level / Year		3/2
Mandatory cours	se			
Course Objectiv	ves:			
Recogniz	ze the principles of enginee	ring drawing.		
> Acquire	imagination skills for proje	ections of engineering	g parts.	
➤ Master th	he use of engineering draw	ing tools.		
		C		
Teaching Metho	ad.			
Lectures, Tutoria				
Expected Learn				
-	etion of this course, it is exp	pected that the stude	nt will b	be able to:
1	·	ng drawing related to	o isome	tric, orthographic
CLO-1: Identify	the principles of engineeri	ng drawing related to) isome	tric, orthographic
CLO-1: Identify projection, and s	the principles of engineeri			tric, orthographic
CLO-1: Identify projection, and s CLO-2: Use ima	the principles of engineeri ectioning. gination skills in projection	is of engineering par		tric, orthographic
CLO-1: Identify projection, and s CLO-2: Use ima	the principles of engineeri	is of engineering par		tric, orthographic
CLO-1: Identify projection, and s CLO-2: Use ima	the principles of engineering ectioning. gination skills in projection the use of engineering draw	is of engineering par		tric, orthographic
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice	the principles of engineering ectioning. gination skills in projection the use of engineering dra-	is of engineering par	ts.	
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice	the principles of engineering ectioning. gination skills in projection the use of engineering dravits: drawing instrumer	as of engineering par wing tools.	ts.	
CLO-1: Identify projection, and s CLO-2: Use ima, CLO-3: Practice Course Content	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument tion dimensioning.	ns of engineering par wing tools. Ints and their uses; lin	ts. es, lett	ering, and
CLO-1: Identify projection, and s CLO-2: Use ima, CLO-3: Practice Course Content	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument tion dimensioning. Geometrical constr	as of engineering par wing tools.	ts. es, lett	ering, and
CLO-1: Identify projection, and s CLO-2: Use ima, CLO-3: Practice Course Content	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument tion dimensioning.	ns of engineering par wing tools. Ints and their uses; lin	ts. es, lett	ering, and
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument tion dimensioning. Geometrical constr	ns of engineering par wing tools. Ints and their uses; lin	ts. es, lett	ering, and
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin ruction, orthographic	ts. es, lett	ering, and ction—first angle
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct Unit II:	the principles of engineering ectioning. gination skills in projection the use of engineering drav ts: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin	ts. es, lett	ering, and ction—first angle
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct Unit II: Unit III:	the principles of engineering ectioning. gination skills in projection the use of engineering dravers tes: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin ruction, orthographic	ts. es, lett	ering, and ction—first angle
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct Unit II: Unit III: Unit III:	the principles of engineering ectioning. gination skills in projection the use of engineering dravers tes: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin ruction, orthographic	ts. es, lett	ering, and ction—first angle
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct Unit II: Unit III:	the principles of engineering ectioning. gination skills in projection the use of engineering dravers tes: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin ruction, orthographic	ts. es, lett	ering, and ction—first angle
CLO-1: Identify projection, and s CLO-2: Use ima CLO-3: Practice Course Content Unit 1: Introduct Unit II: Unit III: Unit III:	the principles of engineering ectioning. gination skills in projection the use of engineering dravers tes: drawing instrument dimensioning. Geometrical constru- projections.	ns of engineering par wing tools. Ints and their uses; lin ruction, orthographic	ts. es, lett	ering, and ction—first angle

- David E. Goetsch, William S. Chaik, Raymond L. Rickman, John Nelson. Technical Drawing and Engineering Communication, 6th Edition, 2010. (ISBN: 1111321752, 9781111321758)
- By Frederick E Giesecke, Ivan L Hill, Henry C Spencer, Alva Mitchell, John T Dygdon, James E. Novak, Shawna Lockhart, Marla Goodman. Technical Drawing with Engineering Graphics, 14th Edition, 2010. Peachpit Press. (ISBN: 1292038586, 9781292038582)

Reference Book (s):

• Colin Simmons Dennis Maguire, Manual of Engineering Drawing, 4th Edition. Technical Product Specification and Documentation to British and International Standards, Elsevier, 2012. (ISBN: 0080966535, 9780080966533

Mode of Evaluation:

Mid-Term Tests (Not less than two Exams)	(30 %)
Classworks	
Homeworks	(20%)
Final Exam	

Course Title	Materials Science	Coordinator			
Course Code	211-ME- 3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	107-CHEM-4 129 -PHYS-4	Level / Year	Level / Year		
Mandatory cours	se				

This course covers and concentrates on principles of material science such as atomic structure and interatomic bonding, the crystal structure of materials, theory of diffusion, imperfections in crystals, mechanical testing and evolution of materials, phase diagram and cooling curves of metals and alloys, iron-carbide diagram for steel and cast iron.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to: CLO-1: Select theories of diffusion and explain the imperfection of crystals

CLO-2: Classify different types of material types based on their properties

CLO-3: Analyse the phases and distinguish invariant reactions of phase diagrams

CLO-4: Assess the structure of metals on a macro/micro scale

Course Contents:	
Course Contents:	
	Learning Objectives
Unit 1: Introduction	Historical Perspective
	Classification of Materials
	Advanced Materials
	Unit Cells
Unit II: Crystal	Metallic Crystal Structures
structure	Crystallographic Points, Directions, Plans
	Crystal Systems
Unit III: Crystal	Point Defects
imperfections	Dislocations
I I I I I I I I I I I I I I I I I I I	Plan Defects
Unit IV: Atomic	Diffusion Mechanisms
diffusion	Fick's First Law
	Fick's Second Law
	Factors That Influence Diffusion
Unit V: Mechanical	Elastic Deformation
properties and	Plastic Deformation
behaviour	Tensile Properties
	Hardness
Unit VI: Phase	Definitions and Basic Concepts
diagram Iron-iron	Binary Phase Diagrams
carbide diagram	Binary Eutectic Systems
carolae diagram	Development of Microstructure
	The iron-Carbon System
	Development of Microstructure in iron-Carbon System
Unit VII: Principle of	Annealing Processes
heat treatment of	Normalizing
ferrous alloy	Spheroidizing
Unit VIII: Corrosion	Electrochemical Considerations
	Forms of Corrosion
	Corrosion Prevention

Textbook (s):
William D. Callister Jr., David G. Rethwisch, "Materials Science and Engineering",
Wiley 10th Edition (2018)
ISBN: 978-1-119-40549-8
Reference Book (s):
R V. Raghavan, Materials Science and Engineering: A First Course 6th Edition, Kindle Edition,
PHI Learning (2015)
ISBN-13: 978-8120324558 ISBN-10: 8120324552
Mode of Evaluation:
Mid-Term Tests (Not less than two Exams)(30 %)
Quizzes and Assignments(20 %)
Lab reports
Final Exam

Course Title	Engineering Mechanics (Statics)	Coordinator		
Course Code	212-ME-2	Credit Hrs.	2	Contact Hrs. 2
Prerequisites	NA	Level / Year		3/2
Mandatory cour	se			
Principles - Forc	vers major topics such a In the and Force Vectors, Momen concept of static torsors (Ce	nts, Equilibrium of	a Partic	le - Force System an
Teaching Meth				
Lectures, Tutori Expected Learn				
After the comple CLO-1: Apply the couples.	etion of this course, it is expe he basic concepts of statics,	calculation of the r		
	e the center of gravity of a r	•		
	nd interpret problems of stat	υ.		
CLO-4: Constru	ct the shear-bending diagram	n and plot the curv	e	
Course Conten	Introduction to Eng	incoring machanic	-	
Unit 1:			5	
Unit II:	General Principles -	Force and Force V	ectors, I	Voments
Unit III:	Equilibrium of a Par	ticle - Force Syster	n and Re	esultants
Unit IV:	The concept of stati Inertia)	ic torsors (Center g	ravity a	nd Moment of
Unit V:	Bending moment of	f rigid bodies		
	Structural analysis			
Unit VI:	Structural analysis			

 Meriam, J. and L.G. Kraige, "Engineering Mechanics: SI Version. Statics", John Wiley a Sons Inc, 2013. (ISBN: 1118164997, 9781118164990)

• Vector Mechanics for Engineers, Statics, 7th Edition, F. B. Beer, E. R. Johnston, W. L. Clausen, McGraw Hill, 2003. Engineering Mechanics-Statics, 14th Edition, Russell C. Hibbeler -Prentice Hall (2015).

Course Title	Production technology and workshop	Coordinator			
Course Code	221-ME-3	Credit Hrs.	3	Contact Hrs.	5
Prerequisites	111-GE-3	Level / Year		4/2	
Mandatory cours	e				

This course covers the fundamentals of manufacturing processes and its basic Concepts for example metal casting, welding process, sheet metal casting , carpentry, automobile and electrical workshop.

Teaching Method:

Lectures, Lab, Tutorial

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to: CLO-1: Identify processes, materials, techniques, practices, conventions, and/or terminology in mechanical engineering

CLO-2: Application of Engineering Principles and theoretical concepts.

Course Contents:	
Unit 1:	Introduction to production engineering
Unit 2:	Introduction to industrial safety
Unit 3:	Engineering materials and Their properties
Unit 4:	Engineering measurements
Unit 5:	Metal casting processes
Unit 6:	Sheet metal work and fitting
Unit 7:	Joining of metals
Unit 8:	Principals of machining
Unit 9:	Carpentry workshop
Unit 10:	Automotive Engg /Electrical Engg
Toythook (s).	

Textbook (s):

W. Scott Gauthier, "Automotive Encyclopedia: Fundamental Principles, Operation, Construction, Service, and Repair" 7th edition, Goodheart-Willcox Publisher, 2000, ISBN: 1566377153, 9781566377157

Chakrabarti, Basic Electrical Engineering, Tata McGraw-Hill Education, 2009, ISBN:0070669309, 9780070669307
Reference Book (s):
R. Thomas Wright, Processes of Manufacturing, Edition 4, Goodheart-Willcox, 2004,
ISBN:1590703626, 9781590703625
John A. Schey, "Introduction to Manufacturing Processes", (McGraw-Hill Series in
Mechanical Engineering & Materials Science), 2000., ISBN: 0071169113, 9780071169110
W Chapman: "Workshop Technology". Vol.: 1, 2. 4 th edition Routledge, 2019, ISBN:
1136898549, 9781136898549
Mode of Evaluation:
Mid-Term Tests (Not less than two Exams)(30 %)
Quizzes and Assignments(15 %)
Lab reports
Final Exam

Course Title	Thermodynamics-1	Coordinator			
Course Code	222-ME-3	Credit Hrs.	3	Contact Hrs.	4
Duesse and alter	129-PHYS-4	Lorol / Voor	Level / Year		
Prerequisites	119-MATH-3	Level / Year			4/2
Mandatory course					

This course covers and concentrates on principles of thermodynamics such as describing what information the First Law of Thermodynamics provides about the "directionality", or "tendency", of physical and chemical changes. To state the First and second Laws of Thermodynamics and describe their significance.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO-1: Identify the basic principles of thermodynamics

CLO-2: Devise the concept of energy and define its various forms

CLO-3: Apply the first law of thermodynamics to various systems

CLO-4: Use the appropriate formulas and solve the engineering problems based on thermodynamic principles

CLO-5: Collect and analyse data through the experiments based on principles of thermodynamics

Course Contents:	
Unit 1:	Introduction
Unit 2:	Fundamental concepts and definitions
Unit 3:	Properties of pure substances
Unit 4:	Work and heat
Unit 5:	First law of thermodynamics and its applications
Unit 6:	The second law of thermodynamics
Unit 7:	Air-standard Brayton cycle
Unit 8:	Entropy, reversibility, and irreversibility
Unit 9:	Applications of steady state and steady flow
Unit 10:	Uniform flow and some processes
Textbook (s):	

Cengel, Yunus A., Michael A. Boles, and Mehmet Kanoğlu. Thermodynamics: an engineering approach. New York: McGraw-hill, 2023

Reference Book (s):

Moran, Michael J., et al. Fundamentals of engineering thermodynamics. John Wiley & Sons, 2010.

Mode of Evaluation:

Mid-Term Tests (Not less than two Exams)(30 %)
Quizzes and Assignments(15%)
Lab reports
Final Exam

Course Title	Strength of Materials and Testing	Coordinator			
Course Code	223-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	211-ME-3	Level / Year		4/2	
Mandatory cour	se				

The main purpose of studying strength of materials and their testing in mechanical engineering is to provide graduate engineers with the means of analyzing and designing various machines components and load-bearing structures. Both analysis and design of a given structure involve the determination of stress and strain. Then, student - engineers will be able to select/calculate/define the suitable material/loads/dimensions for a given application under a given condition. This course has been carefully designed to meet the students' basic needs at this level.

Teaching Method:

Lectures, Lab, Tutorial

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO-1: Outline general objectives of strength of materials

CLO-2: Relate internal loads and type of loading

CLO-3: Calculate normal stress and shear stress

CLO-4: Analys simple design problems

Course Contents:	
Unit 1:	Introduction to strength of materials and static review, general objective and assumptions of strength of materials, internal loads, different types of loading
Unit 2:	Tension, compression, normal stress, normal strain, mechanical properties, Hooke's law, Poisson ratio, allowable stress
Unit 3:	Deformation of Axially Loaded Members, thermal stress and Thermal Strain, Shear stress, Shear strain, Hooke's law, shear modulus
Unit 4:	Torsion formulas, polar moment, Angle of Twist, Torsion of Solid Non-Circular Sections
Unit 5:	Thin walled pressure vessels, longitudinal and transversal stresses in cylindrical vessels, stress in spherical vessels
Unit 6:	Pure bending, bending stress, moment of inertia of sectional area, radius of gyration
Unit 7:	Shear Force and Bending Moment diagram

	-				
Unit 8:	Stress and strain transformations, General equations of plane				
	stress and strain Principal Stresses, Maximum in-plane shear stress				
	and strain, Mohr's Circle, Triaxial stress and strain, Absolute				
	Maximum shear strain				
Textbook (s):					
1.Mechanics of	f Materials (8th Edition) Hardcover - April 1, 2010 by Russell C.				
Hibbeler (Auth	or) ISBN-13: 978-0136022305 ISBN- 10: 0136022308 Edition: 8th				
2. Mechanics o	f Materials Hardcover - January 4, 2011 by Ferdinand Beer (Author),				
Jr., E. Russell	Jr., E. Russell Johnston (Author), John DeWolf (Author), David Mazurek (Author)				
ISBN-13: 978-0073380285 ISBN-10: 0073380288 Edition: 6th					
Reference Book (s):					
Mechanics of Materials	s, Hardcover – April 1, 2010, by Russell C. Hibbeler (Author) ISBN-13:				
978-0136022305 ISBN-	10: 0136022308				
Mode of Evaluation:					
Mid-Term Tests (Not less than two Exams)(30 %)					
Quizzes and Assignments(15%)					
Final Exam					

Course Title	Creativity & Innovation	Coordinator			
Course Code	221-GE-2	Credit Hrs.	2	Contact Hrs.	2
Prerequisites		Level / Year		4/2	
Mandatory course					

Upon completing this course, it is expected that students will be able to:

Creativity and innovation are integral to an organization's ability to survive and thrive in today's competitive marketplace. The main purpose of the course is to provide ample training and exposure to the students to be able to work independently and innovatively in new projects and work assignments. The specific aim is to inculcate innovation-based thinking ability to approach professional challenges.

Teaching Method:

Lectures, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO-1: Combine the roles of skill, experience, motivation and culture in creative endeavor CLO-2: Illustrate some potential disruptive innovations and take advantage of 'open'

innovation

CLO-3: Analyse case study analysis skills (specifically, identifying critical issues in case studies and applying course material to case studies).

CLO-4: Assist the process involved in managing creativity or innovation effectively and apply this knowledge to your own creative idea or innovation

CLO-5: Analyze the influence of problem-solving techniques, team processes, and
environmental conditions on creativity in organizations.

Course Contents:	
Unit 1:	What is creativity and innovation
Unit II:	The need for creativity, invention and innovation
Unit III:	Sources of, and barriers to creativity & innovation
Unit IV:	Creativity tools
Unit V:	Creative thinking and idea generation
Unit VI:	Types and dimensions of innovation
Unit VII:	The innovation processes
Unit VIII	The need for creativity, invention and innovation
Unit VIIII	Sources of, and barriers to creativity & innovation

Textbook (s):
Boynton, Andy and Fisher, Bill. The Idea Hunter: How to find the best ideas and
make them happen. Jossy-Bass A Wiley Imprint, 201
Reference Book (s):
Mode of Evaluation:
Mid-Term Tests (Not less than two Exams)(30 %)
Quizzes and Assignments(30 %)
Final Exam

Course Title	Engineering Programming	Coordinator			
Course Code	103-CMS-3	Credit Hrs.	2	Contact Hrs.	3
	104CMS-2 Computer Science		4		5
Prerequisites		Level / Year		4/2	
Mandatory cours	se				
Course Objectiv					
 Understa 	nd the programming basics in	Python (operations	, contr	ol structures, data	a
types, etc	types, etc.).				
 Understa 	nd various data types and con	trol structure in Pyt	hon.		
 Gain prof 	ficiency in using Python modul	es and libraries for	scientif	fic computing and	
data anal	ysis.				
 Evaluate 	the outcome of Python code.				
Develop	the ability to collaborate with o	others to read and	write P	ython programs f	or
mechanio	cal engineering applications.				
 Apply cor 	mputer programming in Pytho	n to solve engineeri	ng pro	blems.	
	problem-solving skills using co	-			
•		I			
Teaching Metho	od:				
Lectures, Lab					
Expected Learn	8				
-	tion of this course, it is expec		t will t	be able to:	
	the programming basics in P				
	ous data types and control st	-			
-	proficiency in using Python	modules and librar	ies for	scientific compu	ting
and data analysis					
	e the outcome of Python code				
	omputer programming in Pytl	-		problems	
-	problem-solving skills using	-			
-	ate with others to read and wr	ite Python program	is for r	nechanical	
engineering appl					
Course Content					
TT • 1	Introduction to Pytho:	n Programing			
Unit 1:					
	The Core Dether Lor	T			
	The Core Python Lan	guage I			
Unit II:					
Unit III:	Simple Plots and Cha	rts			
Unit IV.					
	Unit IV: The Core Python Language II				
Unit V: NumPy					
Sint V.					
Unit VI: Matplotlib					
Unit VI:	Matplotlib				

Unit VII:	SciPy				
Unit VIII:	Data Analysis with Pandas				
Textbook (s):					
	ific Programming with Python 2nd Edition by Christian Hill. (45918 (paperback) (78039 (epub)				
Reference Book (s):	, 5005 (epus)				
 Applied Numeri Steven Chapra a ISBN10: 126665 ISBN13: 978126 Python 3.11.2 d https://docs.py "Starting Out wi ISBN- 13: 978-1." Python and othe documentation. interact with th small amount or readily accessib 	6651496 ocumentation, the book is available freely on the official website at (thon.org/3.11/). ith Python (4th Edition), Tony Gaddis				
Mode of Evaluation:					
	Mid-Term Tests (Not less than two Exams)(30 %)				
	gnments(20 %)				
Final Exam	Final Exam				

Course Title	Metal Cutting Processes	Coordinator			
Course Code	311-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	211ME-3 221ME-3	Level / Year		5/3	
Mandatory course					

The main aim of this course is to make the students to understand the basic knowledge needed for engineers in the field of conventional and non-conventional machining and develop his information in estimation of machining times and planning of the suitable technological procedures for some machining operations.

Teaching Method:

Traditional classroom, E-learning, Hybrid, Distance learning

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Identify the basics and fundamentals of machining metals and alloys

CLO2: Outline the features and details of each machining techniques

CLO3: Use machines to shape jobs of various materials

CLO4: Estimate the machining times and the machining forces for a job

CLO5: Demonstrate ability to work in teams to machine some components

CLO6: Show self-confidence to work without supervision

	Course Contents:
1	Definitions and basics of manufacturing processes; Classification of manufacturing
-	processes; Definition and purpose of machining.
2	Tool-Work motions and elements of machining for different machining operations.
3	Tool Geometry of single point cutting tool; Tool signature and tool nomenclature by
-	American standard Association system (ASA).
4	Rake Angle, clearance angle and its significance; Metal cutting operation, formation, and types of chips.
-	Shear Angle and Geometry of chip formations; Mechanics of chip formation,
5	Relationship between Velocity of cut (Vc), Flow velocity (Vf) and Shear velocity (Vs);
	Numerical problem based on these relationships.
6	Tool materials commonly used for single point cutting tools and its properties;
	Cutting fluids: types, application, properties
7	Tool wear and Tool Life, Taylor's tool life equation and tool life plots; Problems based
	on tool life.
8	Definition, classification, and basic elements of machine tools; Kinematics of center
	lathe machine; common turning operation performed on lathe machine; Numerical
	problems based on machining time.
9	Hole-making operations: Drilling, Reaming, Boring, Tapping operations, twist drill
	geometry; types of drills; drilling machine; drilling time
10	Reciprocating machine tools: shaper, planning machine and slotting operations,
	milling machine: types, operations, mechanics, milling time
11	Abrasive processes: Grinding, Honing, Lapping; grinding wheel designation and
	selection; types of grinding machines and process parameters
12	Non-conventional machining process: Electric Discharge Machining, Electro Chemical
	Machining

13	Ultrasonic Machining, Laser B	eam Machining, Plasma Arc Machining, Abrasive Water			
	Jet Machining				
14	Revision				
Textb	oook (s):				
		R Schmid, "Manufacturing Processes for Engineering			
Materials", Pearson Education Limited, 2008					
	x	Agapiou, "Metal Cutting Theory and Practice "Taylor			
	& Francis Group, 2006				
Refer	ence Book (s):				
Benjar	mín W. Niebel, Alan B. Draper, Rio	chard A. Wysk, "Modern Manufacturing Process			
Engine	ering", McGraw-Hill, 2002				
Mikell	P. Groover, "Fundamentals of M	odern Manufacturing: Materials, Processes, and			
Systen	ns", John Wiley & Sons, 2010				
Mode	Mode of Evaluation: Percentage				
Quiz.1 5		5			
Assig	nment 1	5			
Midte	rm 1	15			
Quiz.2	2	5			
Assig	nment 2	5			
Midte	rm 2	15			
Lab R	eport	5			
Lab E	xam	5			
Final of	exam	40			
Total		100			

Course Title	Mechanical Engineering Drawing	Coordinator			
Course Code	312-ME-3	Credit Hrs.	3	Contact Hrs.	5
Prerequisites	111-GE-3	Level / Year		5/3	
Mandatory course					

To enable students to recognize and create assembly drawings as well as illustrate and interpret engineering drawing standards used for assembly drawings. Use the SolidWorks mechanical design automation software to build parametric models of parts and assemblies, and how to make drawings of those parts and assemblies.

Teaching Method:

Traditional classroom, E-learning, Hybrid, Distance learning

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Sketch different types of sections in machine drawings

CLO2: Use SolidWorks Software with confidence and design/draft the new innovative parts

CLO3: Use CAD-Software, such as SolidWorks software, in machine drawing

	Course Contents:
	Introduction about the subject, Vision Mission of KKU, COE, MED, PEOs, SLOs,
1	SLOs Syllabus, general requirements, evaluation procedure and distribution of
	marks. Answer students' queries and doubts.
2	Chapter 1: Overview of an Engineering Drawing
3	Conventional Practices for Orthographic Projections: Half Views, Partial Views,
	and Aligned Views.
4	Chapter 2: Sections
5	Conventional Practices in Sectional views: Conventions for Ribs, Webs, Spokes,
	and lugs in Full Sectional View, Broken Section.
	Conventional Practices in Sectional views: Removed Section, Revolved Section,
6	Offset Section, and Auxiliary Sectional Views.
	Simplified Representations of Standard Machine Elements.
7	Chapter 3: Joints and Fasteners
8	Welded and Riveted Joints
9	Threaded Fasteners
10	Chapter 4: Limits, Fits and Tolerances
11	Symbols and Surface Finish.
12	Revision
	Revision and Guidelines for Final Exam
Texth	book (s):
	K. L. Narayana, P. Kannaiah, and K. Reddy, "Machine Drawing", 5th Edition, 2016, New Age International Ltd. Publishers. ISBN: 978-81-224-4054-6

Reference Book (s):

Colin H. Simmons, Dennis E. Maguire, Neil Phelps, "Manual of Engineering Drawing", 3rd Edition, 2009, Elsevier Ltd. ISBN: 978-0-7506-8985-4.

Bertoline–Wiebe, "Engineering Graphics – Fundamentals of Graphics Communication", 5th Editions, 2006, McGraw-Hill, ISBN: 0-390-73230-3.

Mode of Evaluation:	Percentage
Midterm Exam 1	15
Midterm Exam 2	15
Quizzes and Assignment	10
Classwork	20
Final exam	40
Total	100

	`itle	Engineering Mechanics (Dynamics)	Coordinator			
Course C	Code	313-ME-2	Credit Hrs.	2	Contact Hrs.	2
Prerequis	sites	NA	Level / Year		5/3	
Mandator	y cours	e				
Dynamics Apply the Evaluate a	principl princip and illu	es of dynamics and outline to ples of dynamics to solve en strate basic engineering pro-	gineering problems blems independentl			and
After the of CLO1: Aj CLO2: Cl dynamics CLO3: Aj CLO4: So CLO5: Do dynamics	comple pply the hoose t pply ne plve kir evelop	ing Outcome: tion of this course, it is expe e principles for the idealizat he procedure to solve the pro- ewtons laws motions to dyna netics and kinematics proble Freebody diagrams to evalu problems of dynamics in gr	ions of Statics and I oblems by using the mics problems ms ate problems of par	Dynam e laws a	ics problems ind principles of	
	Co	urse Contents:				
1]	Introdu	iction				
2	Center	of gravity and Moment of Ir	nertia			
3 1	Momer	nt of Inertia (Tutorials)				
4]	Kinema	Kinematics of Particles				
5	Kinematics of Particles-Rectilinear Motion					
	Kinematics of Particles-Projectiles					
6	Kinema		Motion			
7]	Kinema	atics of Particles-Projectiles	Motion			
7] 8]	Kinema Kinetic	atics of Particles-Projectiles	Motion cceleration			
7 1 8 1 9 1	Kinema Kinetic Kinetic	atics of Particles-Projectiles atics of Particles-Curvilinear s of Particles - Force-and-A	Motion cceleration nergy			
7 1 8 1 9 1 10 1	Kinema Kinetic Kinetic Kinetic	atics of Particles-Projectiles atics of Particles-Curvilinear s of Particles - Force-and-A s of Particles - Work-and-Er	Motion cceleration nergy			
7 1 8 1 9 1 10 1 11 1	Kinema Kinetic Kinetic Kinetic Planar	atics of Particles-Projectiles atics of Particles-Curvilinear s of Particles - Force-and-A s of Particles - Work-and-Er s of Particles - Impulse-and-	Motion cceleration nergy			
7 1 8 1 9 1 10 1 11 1 12 1	Kinema Kinetic Kinetic Planar	atics of Particles-Projectiles atics of Particles-Curvilinear s of Particles - Force-and-A s of Particles - Work-and-Er s of Particles - Impulse-and- Kinematics of Rigid Bodies	Motion cceleration nergy			

Textbook (s):				
Vector Mechanics for Engineers, Dynamics, 7th Edition, F. B. Beer, E. R.				
Johnston, W. L. Clausen, McGraw Hill, 2003.				
• Engineering Mechanics Dynamics, 14th Edition, Russell C. Hibbeler -				
Prentice Hall (2015).				
Reference Book (s):				
Engineering Mechanics: Dynamics, 1st Computational Edition, R. W.				
Soutas-Little, D. J. Inman, CL-Engineering, 2007				
Mode of Evaluation:	Percentage			
Midterm Exam I	15			
Midterm Exam II	15			
Assignments	10			
Quiz	10			
Homework	10			
Final Exam	40			
Total	100			

1. Course Number	321-ME-3	Course Name	Theory of Machines
2. Credit hours	2 L + 1 T/P = 3	Contact hours	2L + 2T/P = 4 per week
Level / Year	6/3		1
3. Course	Dr. Vineet Tirth		
Instructor	Office No. 1-2-85		
Tutorial/Practical	Dr. Vineet Tirth		
Instructor	Office No. 1-2-85		
4. Textbook, title,	Textbook:		
author, and year		nes; R.S. Khurmi and J.	K. Gupta; S. Chand and company Ltd.;
	New Delhi.		
	a. Other supplem		
	-		a McGraw Hill, New Delhi.
	•••	•	machines and mechanisms.
		and Machine Theory; J S	Rao and Dukkipati; Wiley Eastern, New
	Delhi.	1	
	-		A Ghosh and AK Malik, East West
F C	Press (Pvt.) Ltd		
5. Specific course information	-		e course (catalog description) performance, and principles of motion;
			id bodies. It also includes the design of
			Introduction to gyroscope and balancing
	-		is given on applications and design of
		-	e subject has four credit hours and five
	-	-	tures and two hours for practical/tutorial.
	-		en in lab sessions and the problems are
	solved in tutorial s		I I I I I I I I I I I I I I I I I I I
	Theory of machine	es is a core mechanical e	engineering subject and a prerequisite for
	machine design.	The conventional me	ethod of classroom interaction using
	multimedia teachi	ng aids and animations/	videos will be used for lecture sessions.
	The communication	on between the instruc	ctor and the students will be regularly
	maintained using l	blackboard interface.	
b. Prerequisites			
Co-requisites	Nil		
c. Required,	Required	Language of	English
Elective, or		instruction	
Selected		Hardware/software	For Blackboard, online quizzes
elective		usage	

L Lecture; T Tutorial; P Practical

6. Specific	a. Specific outcom	es of instruction		
goals for the	-	the course the student should be a	able to:	
course		ine basic concepts of links,		-dom machines and
course	mechanisms. SO1,	-		aom, machines and
		ate velocity of basic mechanis	sms SO1 KI O1	
		ruct the displacement diagram		
		problems on Gears and Gove	-	
		ate mechanisms for different a		
		g Outcomes (Mapped with Stu		
	D. Course Learning	, Outcomes (Mapped with Su	ident Outcome o	i Criteria 5)
	CLO#	MEP Rubrics:	ABET	NCAAA
		Performance Indicator	SO#	KLO#
	CL01	1.1	1	1
	CLO2	1.3	1	1
	CLO3	2.6	2	2
	CL04	1.2	1	1
	CL05	2.6	2	2
		2.0	2	2
7. Brief list of				
topics to be				
covered	Introductio	n.		8
		its, Pairs, Degree of Freedor	m Difference h	
		Mechanisms and Machines		
	Mechanisn			ompiex
	Mechanisn			10
	Analysis o	f Mechanisms, Four Bar M	lechanisms Cra	
		chanisms, Crank and Slotte		
		n, Whitworth Quick Return		Return
		f Velocity in Mechanisms:	Tricenumbin.	12
	•	f a point on a link, Linear ar	nd Angular Vel	
		ocity Analysis using graph	0	•
		anism, Crank and Slider		
	Mechanisn			ompiex
		f CAM and Follower Mech	anisms	12
		on to types of CAMs and H		
		Knife Edge Followers w		•
		rmonic Motion (SHM), Uni		•
	-	n, Cycloidal Motion, Radial		
	Gears	, ,		9
	Different t	ypes of Gears, Analysis of S	Simple and Cor	
		ar Trains, Internal and Ex	-	-
		cyclic Gears.	,	
	Governors	-		5
		on to Governors, Types of	Governors, W	
	Porter Gov	• •		
8. Any other				
information	Course Assessm	ent*		

Activity	Assessment% (Marks)
Mid Exam 1 (Mandatory)	15% (15 Marks)
Mid Exam 2 (Mandatory)	15% (15 Marks)
Quiz (Blackboard)	10% (10 Marks)
Project/Assignment	5% (5 Marks)
Tutorial Sheets and Practical	15% (15 Marks)
Final Exam	40% (40 marks)
Total	100% (100 Marks)

*Subject to Approval by the College of Engineering/Department Administration

Course Title	Fluid Mechanics	Coordinator			
Course Code	322-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	222-ME-3	Level / Year		6/3	
Mandatory co	urse				
Course Objec	tives:				
It's to introduc	the main topics of fluid mec	hanics to mechanica	l engir	neering students	
Teaching Me Traditional cla	t hod: Issroom, E-learning, Hybrid, D	istance learning			
Expected Lea	rning Outcome:				
	pletion of this course, it is expe		t will b	e able to:	
	e basics concepts of fluid mech				
	engineering judgement throug	1 I			
CLO3: Collec	t and analyse data through exp	eriments in fluid me	chanic	S	
	Course Contents:				
1 Intro	duction				
2 Fluid	l definition -Dimensions and u	nits			
3 Fluid	l properties				
4 Fluid	l Statics				
5 Buoy	vancy and Stability of floating	body			
6 Fluid	I Kinematics				
7 Fluid	I Dynamics				
8 Ener	gy Principles				
Textbook (s):					
	n T. Crowe, Donald F. Elg	er and John A. Ro	oberson	n, Engineering Flu	uid
Mecha	nics", John Wiley& Sons, Inc.,	8th Ed., 2006			
Reference Bo	· · /				
Robert W. Fox,	Alan T. McDonald and Philip J.	Pritchard "Introducti	on to F	luid Mechanics	
Mode of Eval	uation:	I	Percen	tage	
Homeworks			5		
Midterm			15		
Midterm			15		
Quizzes			5		
Lab Reports			10		
Lab Exam			5		
Project			5		
Final Exam			40		
		1			

Course Title	Machine Elements Design-1	Coordinator		
Course Code	411-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	223-ME-3 312-ME-3	Level / Year		7/4
Mandatory cours	se			
Course Objecti	ves:			
	ifference between theory and the			
	design theories and their applica	tions.		
	ind calculate principal stresses.			
.	designing simple machine parts			
Teaching Meth	using computer in design and d	irawing		
	room, E-learning, Hybrid, Dista	ance learning		
Expected Learn				
-	etion of this course, it is expecte	d that the student	will h	e able to
	ish between theory and the appl			
	ngineering analysis principles ar		prope	r analysis of a
	on mechanical system compone			2
CLO3: Design r	nechanical system components	so as to perform s	safely	their intended
	nony with other components of	•		
	rmation resources to identify ap			
	ystem design problems, locate s			onents, and
understand the a	nalysis and design methods for	these component	S	
	ourse Contents:			
	uction to design processes, type	es of stresses, an	d mat	erial selection.
-	e theories: static and dynamic.	• • • • • • • • • • • • • • • • • • •		
2 Design	of joints: riveted, welded, screw	wed, and cotter a	nd knu	ckle joints
3 Coupli	ngs design: rigid and flexible			
4 Clutch	es design.			
5 Brakes	design			
6 Spring	s design			
7 Chain	drives			
8 Power	screws design			
Textbook (s):				
	R.S. & Gupta, J.K., "Machine			
`	2005) ISBN-10 : 8121925371			
	J.E., "Mechanical Engineer			w Hill, Inc., 10th
	SBN-13: 978-0073398204 ISBN			laching Commonants
	 Juvinall& Kurt M. Marshek 5th Edition, John Wiley & Sons 			1
	Mott, "Machine Elements in Me			
1999.		e-manieur Desigii	, 5101	Landon, i rendee ffull,
Avallone	, E.A., Baumeister, T., "Ma s", 11th Edition, McGraw Hill, 2		Iandbo	ook for Mechanical
Lingineer		2007		

Reference Book (s):

Robert C. Juvinall& Kurt M. Marshek, "Fundamentals of Machine Components Design", 5th Edition, John Wiley & Sons Inc., 2012, ISBN 9781118012895.

Robert L. Mott, "Machine Elements in Mechanical Design", 3rd Edition, Prentice Hall, 1999. Avallone, E.A., Baumeister, T., "Marks Standard Handbook for Mechanical Engineers", 11th Edition, McGraw Hill, 2007.

Mode of Evaluation:	Percentage
Quiz-1, Quiz-2 & Quiz-3	15
Midterm-1 & Midterm-2	30
Tutorial	10
Assignment	5
Final Exam	40
Total	100

Course Title	Metal Forming Process	Coordinator			
Course Code	412-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	211-ME-3 221-ME-3	Level / Year		7/4	
Mandatory cours	Se.				

This course covers and concentrates on principles of material science such as atomic structure and interatomic bounding, crystal structure of materials, theory of diffusion, imperfections in crystals, mechanical testing and evolution of materials, phase diagram and cooling curves of metals and alloys, iron-carbide diagram for steel and cast iron

Teaching Method:

Traditional classroom, E-learning, Hybrid, Distance learning

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: State principles of the forming properties such as fusibility, plasticity, and ductility and choosing the proper processes forming methods

CLO2: Differentiate various casting processes and Forming Processes

CLO3: Compare various composite fabrication processes

CLO4: Show self-confidence to work without supervision in production lab

CLO5: Demonstrate ability to work in teams to weld different materials

	Course Contents:
1	Introduction to casting and different casting techniques. Molding materials and
	their properties. Sand casting technology, Melting furnaces.
2	Solidification of pure metals and alloys. casting defects. Quality control in sand
	casting. Permanent die casting, Investment casting. Continuous casting.
3	Introduction to plastic deformation processes. Extrusion process of metals, Types
3	of Extrusion, Characteristics of extrusion, Extrusion Machines Die Design,
	Defects, materials, Applications, Numerical Problems.
	Forging of metals, Types of forging process, Forging Equipment's, Defects, Die
4	Design, Forging materials, Applications, Numerical Problems. Principles of
	Rolling process, Types Rolling process and machines, Defects, Advantages,
	Applications Numerical Problems.
	Introduction to welding and different welding processes. Soldering, brazing
5	techniques. Fusion welding processes, shielded metal arc welding, Gas metal arc
	welding, Gas tungsten arc welding. Solid state welding. Welding defects, Welding
6	inspection, Welding symbols.
6	General Introduction about material fabrication techniques.
	Introduction to ceramics, types of ceramics, forming techniques of glass ceramics,
7	Casting, spinning, pressing, Blowing, drawing, production of glass fibers, Heat
,	treatment of glasses. Fabrication of clay products; Hydro plastic forming, slip
	casting, Powder pressing, tape casting.
8	Introduction to Polymer Additives.
9	Introduction to Fabrication of polymers Extrusion, injection molding, blow
	molding, Thermoforming, compression molding, Casting, vacuum forming.
10	Micro/Nano Injection molding

11 Additive Manufacturing Technology	(3D Printing)
12 Introduction to Materials Characteria	zations Techniques
Textbook (s):	
•	ser R. A., "Materials and Processes in
Manufacturing", 9th, Edition, 2002.	
1 0	nufacturing Engineering and Technology",
6th ed. Prentice Hall, 2009.	
Edition (ISBN 978-0470-467002).	rring: Materials, Processes, and Systems, 4th
× / /	r and gating design handbook: tools for
	., Hanser Publications, Cincinnati, 2019.
Reference Book (s):	
Degarmo, E.P., Black, J.T., and K	Cohser R. A., "Materials and Processes in
Manufacturing", 9th, Edition, 2002.	
Kalpakjian, S. & Schmid, S.R., "Man ed. Prentice Hall, 2009.	ufacturing Engineering and Technology", 6th
Fundamentals of Modern Manufactu	ring: Materials, Processes, and Systems, 4th
Edition (ISBN 978-0470-467002).	
	gating design handbook: tools for successful
injection molding, 3rd ed., Hanser Pu	
Mode of Evaluation:	Percentage
Midterm Exam 1	15
Midterm Exam 2	10
Quizzes, Project and Assignment	20
Lab	15
Final exam	40
Total	100

Course Title	Heat Transfer	Coordinator		
Course Cod		Credit Hrs.	3	Contact Hrs. 4
Prerequisite	322-ME-3	Level / Year		7/4
Mandatory c	ourse			
Course Obje	ectives:			
It's to introdu	ice the main heat transfer topics	to mechanical engin	neering	g students
Teaching M	ethod:			
	lassroom, E-learning, Hybrid, D	Distance learning		
	arning Outcome:			
	pletion of this course, it is expe		will t	be able to:
	ify the basic concepts in heat tra			
	lop experimental skills in engin			
CLO3: Exan	nine the data obtained through the	he experiments in hea	at tran	ster
	Course Contents:			
	oduction to heat transfer			
2 Mo	des of Heat Transfer & Electric	Circuits.		
3 Ste	ady State Conduction.			
4 Fin	s & Extended Surfaces			
5 Un	steady State Conduction			
6 Fre	e Convection.			
7 For	ced Convection.			
8 Rac	liation			
9 Hea	tt Exchangers			
Text	book (s):			
Theo	dore L. Bergman and Adrienn	e S. Lavine, "Funda	menta	ls of heat and Mass
	fer",WILEY ,8th Ed., 2017			
	1-9781119337676			
	1-9781119320425			
Reference B			_	
	s A. Cengel and Afshin J. Gha		Trans	ster Fundamentals &
	cations", McGraw-Hill Educat)	40.00
Mode of Eva		l l	Percen	0
Midterm Exa			15	
Midterm Exa			15	
Quizzes and	Assignment		15	
Lab Einel and			15	
Final exam			40	
Total			100	J

Course Title		Measuring D	evices	Coordinator	1		1
Course Cod	e	414-ME-2		Credit Hrs.	2	Contact Hrs.	3
Prerequisite	es	321-ME-3		Level / Year		7/4	
Mandatory c	ourse	;					
Course Obje Understand t Know the dif Gain the skil Gain the acco Teaching M Traditional c Expected Le After the cor CLO1: Defin and Precision CLO2: Justif CLO3: Calco	ective he ba fferer ls of uracy etho lassre arni nplet ne ba n fy the ulate	es: asic principles at measurements using the differ skills in the skills in the com, E-learning of this consist concepts of awareness a	nt ways in the ferent measuri different measuri ing, Hybrid, E : urse, it is expo of Measureme	ent and device usage mechanical engine ng devices in the m surement operations Distance learning ected that the studer nt, Metrology, Erro iples of measureme ectly by hand or by	ering fi echanic a. nt will b r, Unce nt	e able to: rtainty, Accurac	у
the coverage CLO5: Inter from the exp CLO6: Appr	of en pret s erime	rors and unce afe and logic ent to attain a independent l	ertainty in mea al lab procedu stated objecti earning by as	ctly using statistica	l conce per plan errors	pts, especially du n for data gatheri statistically.	uring
the coverage CLO5: Inter from the exp CLO6: Appr assignments/	of er pret s erime raise f (semi Cou	rors and unce afe and logic ent to attain a independent l nars/discussio	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo	ctly using statistica asurements. ares, develop of pro- ve, and account for signing and evaluat orating the recent to	l conce per plan errors	pts, especially du n for data gatheri statistically.	uring
the coverage CLO5: Inter from the exp CLO6: Appr assignments/ 1 Intr	of en pret s erime caise f /semi Cou	rors and unce afe and logic ent to attain a independent l nars/discussio urse Content ction to Mecl	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu	actly using statistical asurements. ares, develop of pro- ve, and account for signing and evaluate orating the recent to arements	l conce per plan errors	pts, especially du n for data gatheri statistically.	uring
the coverage CLO5: Inter from the exp CLO6: Appr assignments/ 1 Intr 2 Ter	of er pret s erime caise f (semi csemi Cou roduc	rors and unce afe and logic ent to attain a independent l nars/discussion urse Content ction to Mech logy in Mech	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu	actly using statistical asurements. ares, develop of pro- ve, and account for signing and evaluate orating the recent to arements rements	l conce per plan errors	pts, especially du n for data gatheri statistically.	uring
the coverage CLO5: Inter from the exp CLO6: Appr assignments/ 1 Intr 2 Ter	of er pret s erime caise f (semi csemi Cou roduc	rors and unce afe and logic ent to attain a independent l nars/discussion urse Content ction to Mech logy in Mech	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu	actly using statistical asurements. ares, develop of pro- ve, and account for signing and evaluate orating the recent to arements rements	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin
the coverage CLO5: Inter from the exp CLO6: Appr assignments/ 1 Intr 2 Ter 3 Acc	of en pret s erime raise f /semi Cou roduc	rors and unce afe and logic ent to attain a independent l nars/discussion urse Content ction to Mech logy in Mech y, Precision a	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu	ctly using statistica asurements. ures, develop of pro- ve, and account for signing and evaluate orating the recent to urements rements t Digits	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin
the coverage CLO5: Interj from the exp CLO6: Appr assignments/ 1 Intr 2 Ter 3 Acc 4 Err	of er pret s erime raise i /semi roduc roduc curac	rors and unce afe and logic ent to attain a independent I nars/discussio urse Content ction to Mech logy in Mech y, Precision a	ertainty in mean al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu nanical measu	ctly using statistica asurements. ures, develop of pro- ve, and account for signing and evaluation orating the recent to urements rements t Digits on of Errors	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin
the coverage CLO5: Interj from the exp CLO6: Appr assignments/ 1 Intr 2 Ter 3 Acc 4 Err 5 Uno	of er pret s erime vaise i 'semi roduc roduc rmino curac ors in certai	rors and unce afe and logic ent to attain a independent l nars/discussio urse Content tion to Mecl logy in Mech y, Precision a n Measurement inty analysis-	ertainty in mea al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu nanical measu and Significan nt-Classificati	actly using statistical asurements. ures, develop of pro- ve, and account for signing and evaluation orating the recent to urements t Digits on of Errors oblems	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin
the coverage CLO5: Interj from the exp CLO6: Appr assignments/ 1 Intr 2 Ter 3 Acc 4 Err 5 Uno 6 Dat	of er pret s erime vaise i 'semi roduc roduc curac ors in certai ta ana	rors and unce afe and logic ent to attain a independent l nars/discussio urse Content tion to Mecl logy in Mech y, Precision a n Measurement inty analysis-	ertainty in mea al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu nanical Measu nanical measu and Significan nt-Classificati Numerical Pro- tation, and wr	actly using statistical asurements. ures, develop of pro- ve, and account for signing and evaluation orating the recent to urements t Digits on of Errors oblems	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin
the coverage CLO5: Interj from the exp CLO6: Appr assignments/ 1 Intr 2 Ter 3 Acc 4 Err 5 Uno 6 Dat 7 Ter	of er pret s erime vaise i 'semi roduc roduc curac ors in certai ta ana	rors and unce afe and logic ent to attain a independent I nars/discussio urse Content tion to Mech logy in Mech y, Precision a n Measurement inty analysis- ilysis, presen	ertainty in mea al lab procedu stated objecti earning by as ons by incorpo s: nanical Measu nanical Measu nanical measu and Significan nt-Classificati Numerical Pr- tation, and wr ement	actly using statistical asurements. ures, develop of pro- ve, and account for signing and evaluation orating the recent to urements t Digits on of Errors oblems	l conce per plan errors	pts, especially du n for data gatheri statistically.	urin

& Sons Ltd The Atrium, Southern Gate Chichester, West SussexPO19 8SQ United Kingdom ISBN-10 : 9383656913

ISBN-13 : 978-9383656912J.P. Beaumont, M. Smith, Runner and gating design handbook: tools for successful injection molding, 3rd ed., Hanser Publications, Cincinnati, 2019.

Reference Book (s):

S.P. Venkateshan. Mechanical Measurements (2nd Edition) (2015) John Wiley & Sons LtdThe Atrium, Southern GateChichester, West SussexPO19 8SQ United Kingdom ISBN-10 : 9383656913

ISBN-13 : 978-9383656912

Mode of Evaluation:	Percentage
Midterm Exam 1	15
Midterm Exam 2	15
Quizzes	10
Assignment	20
Final exam	40
Total	100

Course Title	Machine Design	Coordinator		
Course Code	421-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	411-ME-3	Level / Year		8/4
Mandatory cours	e			
Course Objectiv	ves:	I		
	cept, procedures, and data for			
0	achine elements in power tra	•		1 1 1
	ency in sizing and selecting m	iechanical compone	nts for	mechanical systems
Teaching Metho Traditional classi				
Expected Learn	•			
-	tion of this course, it is exper	cted that the student	will b	e able to:
CLO1: Categoriz	ze the machine elements in po	ower transmission s	ystem	s and acquire
	zing and selecting mechanica	-		ical systems
	e concept, procedures, and da			
	nd select mechanical element			
I	re theories for designing eler	nents made of ducti	le or b	rittle materials.
	urse Contents:			
1 Introdu	ction to stress analyses			
2 Design	of shafts & keys			
3 Design	Design of Belts			
4 Design	Design of bearings			
5 Design	Design of journals			
6 Types of	Types of transmissions			
7 Study t	he different types gearboxes			
8 Design	Design of single reduction gear box			
Textbook (s):				
Sheigley	Mechnical Engineering des	ign book 10th editi	on 20	12
Reference Book	(s):			
Lingaiah, K., " Machine Design Data Handbook", McGraw Hill Inc., 1994.				
Mode of Evalua	Mode of Evaluation: Percentage			tage
Homework1	Homework1 1			-
Quiz1				5
Homework2				
Quiz2				5
Homework 3			1	
Midterm 1	idterm 1 30			
Homework4	Iomework4 1			
Ouiz3	uiz3 1.25			5

Homework5	1
Quiz4	1.25
Presentation	20
Final exam	40

Course T	Title	Thermodynamics-2	Coordinator		
Course (Code	422-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequi	sites	222-ME-3	Level / Year		8/4
Mandator	ry cours	se			·
Course (•				
		its to understand, define, des	sign, and analyse dif	ferent	types of refrigeration
and powe					
Teaching Tradition					
-		ing Outcome:		4: 11 1	· · · h1· · · ·
		tion of this course, it is expe the power and refrigeration		t will t	be able to:
		e thermodynamics relations	-	mnla a	ommaggible
substance		•	generally and for si	inple c	ompressible
	-	•	occessos in thermody	nomio	austoma
	-	the fuels and combustion pr e basics, physical concepts i	-		-
CLO4. A			ii the practical appli	cation	s of gas mixtures
		ourse Contents:			
1	First a	nd second laws of thermody	ynamics.		
_	Power	systems with phase change	Concepts of vapor	oower	cycles and their
		tions: Rankine cycle for vap		heat cy	ycle, and
	Regene	rative cycle. Lab experimen	t: Steam turbine).		
	•	eration systems with phase c	•	•	•
0	-	plications: Refrigerators and		-	e
	-	Selection of the right refrige		tems. I	Lab experiment: Heat
	<u> </u>	nd Industrial refrigeration s			
		systems with working gased			
		plications: Otto cycle, Dies			
		Lab experiment: Gas turbin			
		eration systems with working	g gaseous fluids (In	e air- s	standard
		ation).	I relations Cibbs of	motion	Clanauran
		n, Clapeyron-Clausius equa		•	· · ·
0	-	y, internal energy and entro			
	Coeffic		py and specific ficat	, Jouie	
		xtures (Composition of a ga	s mixture P-v-T bel	havior	of gas mixtures
		odynamic properties of gas 1		14 101	or gus mintures.
		por mixtures and air-conditi		ospher	ic air-Specific and
		humidity of air-Dew-point			
		Air-conditioning processes. I	_		
		cal reactions (Fuels and com			
		combustion processes. Entha	-	-	
		-flow and closed reacting sy			
	-	tic flame temperature)			
Textboo	k (s):				
		A. Cengel and Michael A	. Boles. Thermod	lynami	cs: An Engineering
		h, 8th Ed. McGraw Hill,		-	
	ISBN-10 : 9780073398174				

Reference Book (s):		
Moran, M.J., and Shapiro, H.N., Fundamental of Engineering Thermodynamics,		
6th Ed., John Wiley & Sons, 2007.		
Borgnakke, C. and Sonntag, R. E., I	Fundamentals of Thermodynamics, 7th Ed.,	
John Wiley & Sons, 2009.		
Mode of Evaluation:	Percentage	
Midterm Exam 1	15	
Midterm Exam 2	15	
Quizzes and Assignment	15	
Lab	15	
Final exam	40	
Total	100	

Course Title	Hydraulic Machines &	Coordinator		
	Fluid Power Systems			
Course Code	423-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	322-ME-3	Level / Year		8/4
Mandatory cour	se			
Course Object				
	erent types and applications		nes.	
	tween impulse and reaction			
	erent types and applications erformance of pumps and t		ining h	udraulic volumetric
	l overall efficiencies.	urbines by determine	ining n	yuraune, vorumente,
	em head losses through a sys	tem.		
	connect pumps in series and			
Specify the basi	c components of fluid power	r system, such as pu	mps, ac	tuator, valves, filters,
and reservoirs.				
	bes of hydraulic valves.			
	nstruction and design feature		ders.	
	eration and performance of h	ydraulic circuits.		
Teaching Meth Traditional clas				
Expected Lear				
-	etion of this course, it is exp	ected that the stude	nt will b	e able to:
-	the hydraulic machines acco			
•	hydraulic valves and their u	-		
•	e hydraulic machines accord		tion.	
-	te a pump's required pressure			c application.
CLO5: Design	hydraulic machines (Turbine	es and Pumps)	_	
CLO6: Measure	e turbines and pumps perform	nance under differe	nt cond	itions.
CLO7: Estimate	e and diagram pump perform	nance		
•	hydraulic circuits and their	*		
	ngineering problems for hydr	raulic machines.		
	ourse Contents:			
	uction to Hydraulic Machin	nes		
2 Pelton	Pelton Turbines			
3 Franci	Francis & Kaplan Turbines			
4 Centri	Centrifugal Pumps			
5 Cavita	Cavitation in Pumps			
6 Pumps	Pumps Connection and selection			
7 Introd	uction to fluid Power system	IS		
8 Hydra	Hydraulic Pumps (Positive displacement pumps)			
9 Hydra	Hydraulic Valves			
10 Hydra	Hydraulic Cylinders and Tanks			

11 Examples of Hydraulic circuits	Examples of Hydraulic circuits		
Textbook (s):			
01	Hydraulic Machines", S. Chand and Co., 6th,		
ed., 2014.			
÷	plication", Prentice Hall Inc., 6th ed., 2003.		
Reference Book (s):			
	Thermodynamics of Turbo-machinery",		
Butterworth Heinemann, 5th ed., 200			
Crowe, T.C., et al. "Engineering Flui Levuis P. L. "Turks mashingay Part			
	formance Analysis", Arnold, London,		
,	Butterworth-Heinemann, 2001. Krivchenko, G. I., "Hydraulic Machines: Turbines and Pumps", Lewis Publishers,		
2nd ed., 1994.			
,	Pinches, M. J. & Ashby, J. G., "Power Hydraulics", Prentice Hall, 1988.		
• • • •	d its industrial Applications", McGraw-Hill,		
1960.	ri,		
Mode of Evaluation:	Percentage		
Assignments	7		
Quizzes	7		
Midterm exam -1	15		
Midterm exam -2 15			
Reports and Oral Exam 10			
Final practical exam	6		
Final exam	40		

Course Title	System Dynamics and Mechanical Vibrations	Coordinator		
Course Code	424-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	321-ME-3 319-MATH- 3	Level / Year		8/4
Mandatory cour	se			·

Developing course material according to the up-to-date advancements in the field and providing reference material.

Teaching Method:

Traditional classroom

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to: CLO1: Define dynamical/vibrational characteristics of mechanical systems, degrees of freedom, and types of vibrations.

CLO2: Explain the principles of dynamics and vibrations of mechanical systems.

CLO3: Construct mechanical and mathematical models for the dynamic systems.

CLO4: Analyse the mechanical system's dynamical parameters

 Introduction to dynamic systems, Modeling of mechanical systems Methods of solving differential equations & Laplace transformations State Space Representation & Transfer Function development of mechanical systems Introduction to Vibrations of single degree of freedom SDOF systems + Free damped/Damped Vibrations Analysis Forced Vibrations for Damped/Un-damped SDOF systems Frequency Response Transfer Function – Bode Plots Vibrations of multi degree of freedom systems Introduction to Continuous Systems Vibration Absorption and Isolation 	
 3 State Space Representation & Transfer Function development of mechanical systems 4 Introduction to Vibrations of single degree of freedom SDOF systems + Free damped/Damped Vibrations Analysis 5 Forced Vibrations for Damped/Un-damped SDOF systems 6 Frequency Response Transfer Function – Bode Plots 7 Vibrations of multi degree of freedom systems 8 Introduction to Continuous Systems 	
systems Introduction to Vibrations of single degree of freedom SDOF systems + Free damped/Damped Vibrations Analysis 5 Forced Vibrations for Damped/Un-damped SDOF systems 6 Frequency Response Transfer Function – Bode Plots 7 Vibrations of multi degree of freedom systems 8 Introduction to Continuous Systems	
damped/Damped Vibrations Analysis5Forced Vibrations for Damped/Un-damped SDOF systems6Frequency Response Transfer Function – Bode Plots7Vibrations of multi degree of freedom systems8Introduction to Continuous Systems	al
6 Frequency Response Transfer Function – Bode Plots 7 Vibrations of multi degree of freedom systems 8 Introduction to Continuous Systems	e Un-
 7 Vibrations of multi degree of freedom systems 8 Introduction to Continuous Systems 	
8 Introduction to Continuous Systems	
0 Vibration Absorption and Isolation	
³ Violation Absolption and isolation	

Textbook (s):

Mechanical Vibrations 5th Edition by Singiresu S. Rao.

Fundamentals of Applied Dynamics by Williams, James H., Jr.

Reference Book (s):

K. Ogata, "System Dynamics", Pearson Prentice Hall, 4th Edition.

Thomson, W.T. "Theory of Vibration with Applications", Prentice hall, 5th Edition Ira Cochin, Harold J Plass, "Analysis and Design of dynamic System". Publisher: Harper & Row, Edition: 1990. Ernst W., "Oil Hydraulic Power and its industrial Applications", McGraw-Hill, 1960.

Mode of Evaluation:	Percentage
Midterm Exam 1	15
Midterm Exam 2	15
Quizzes and Assignment	20
Lab	10
Final exam	40
Total	100

Course Title	Senior Design Project	Coordinator			
Course Code	573-ME-4	Credit Hrs.	4	Contact Hrs.	4
Prerequisites		Level /Year		9 & 10 / 5	
Mandatory course					

The graduation project is a project chosen by the student in the final year (in the ninth level). Students start to collect theoretical and practical information about the subject of the project and design and construct an experimental setup or develop a mathematical model. The second phase consists of performing experimental tests or verifying mathematical models using a computer simulation. Finally, the students prepare a final report, present it, and defend it in front of the Committee of project evaluation.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: State the basic science and mathematics, rules and steps of design, planning, and implementation of the engineering projects

CLO2: Relate societal, health, safety, legal, management, sustainability, and cultural issues involved in executing the engineering project

CLO3: Identifying the problem and formulating the procedure to solve the engineering problem

CLO4: Distributing the project work among the team and contributing individually

CLO5: Judge and understand contemporary issues involved in the project

CLO6: Assist on the internet and digital library to get more information and employ the blackboard facility to deal with each other and with the instructors

CLO7: Identifying, formulating, and finding various solution strategies by using appropriate resources

CLO8: Recognizing the techniques, skills, and modern engineering tools necessary for completing the project and justifying or evaluating the errors

CLO9: Appraise ideas and project outcomes using graphs, tables, and diagrams, and present and organize the thesis as per the standard format

CLO10: Organization of project content

CLO11:Judge and understand contemporary issues involved in the project

CLO12: Demonstrate and work cordially among the team to execute and complete the project.

CLO13: Demonstrate the proper use of English

CLO14: Show ability to communicate the methodology and solution

CLO15: Participate effectively and interact with audience

CLO16: Evaluate and integrate sustainability principles in the design, development, and execution of engineering projects, ensuring compliance with relevant environmental standards

CLO17: Analyse and incorporate cost-effectiveness and resource optimization in the implementation of engineering project

CLO 18: Analyse and articulate the impact of engineering decisions on global, economic, and social contexts by integrating ethical and stakeholder needs

CLO 19: Demonstrate the ability to make informed judgments in the design and implementation of engineering solutions

CLO 20: Design, develop, and test prototypes following relevant standards, and critically analyze results to refine engineering solutions

CLO 21: Inspect cultural, and social considerations into the design of engineering solutions and demonstrating awareness of diverse perspectives and societal impact

Course		
Contents:		
Textbook (s)	:	
Reference B	ook (s):	
Mode of Eva		100/
1.	Group Discussion, examination, speech	10%
2.	Internal presentations	10%

3.	Technical report (Interim)	10%	
4.	First phase presentation	10%	
5.	Second Phase internal presentation	10%	
6.	Poster Presentation	10%	
7.	Final Report	20%	
8.	Final presentation	20%	
	Total	100%	

Course Title	Control Systems	Coordinator			
Course Code	511ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	424-ME-3	Level / Year		9/5	
Mandatory cours	se				

The course objective is to enable the students to understand principles of control systems such as classifications of control systems, characteristic of feedback control systems, modelling of mechanical, electrical, electro-mechanical and hydraulic systems, block diagrams reduction. In addition to that, to analyze the performance of the first and second order systems and stability concepts.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Define in-depth integrated body of knowledge and comprehension of the underlying theories, principles, and concepts in automatic control.

CLO2: Apply integrated theories, principles, and concepts in various contexts, related to control systems, profession, or field of work

CLO3: Evaluate and collaborate responsibly and constructively in the practical and experimental work

Course	
Contents:	
1	Introduction to control systems and Laplace transforms.
2	Theory and modeling of linear mechanical systems: lumped parameter models of mechanical, electrical systems and Electromechanical systems; interconnection laws.
3	Actuators and sensors. Linear systems theory: linear algebra.
4	Block diagrams.
5	Time response, poles and zeros.
6	Time response solutions via analytical and numerical techniques.
7	Stability and Feedback systems control.
8	Stability of control systems: Routh–Hurwitz criterion
9	Controllers.
10	PID compensation; steady-state characteristics.
11	Root-locus and Frequency domain method.
12	Bode plots and Nyquist stability.
Textbook (s):	

1. An and Kumar. " Control Systems" 2th Ed, PHI Learning Private Limited, Delhi, 2017. ISBN: 9788120349391.

2. Farid Golnaraghi, Benjamin C. Kuo, "Automatic Control Systems", 10th d,McGraw Hill , Inc, 2017. ISBN:9781259643842.

Nagoor, K., "Control System Engineering " 2st Ed., Rba Publications, 2013.ISBN: 9780000326065

Mid-Term Tests (Not less than two Exams)(30 %	6)
Quizzes, Assignments, and Discussion Boards	6)
Lab reports	b)
Final Exam	%)

Course Title	Engineering Entrepreneurship	Coordinator		
Course Code	511-GE-2	Credit Hrs.	2	Contact Hrs. 2
Prerequisites	NA	Level / Year		9/4
Mandatory course				

This course aims to provide the background necessary to understand the entrepreneurial approach to business and the tools required to function effectively in the competitive entrepreneurial environment. At the end of this course, the students should be able to:

Explain and analyze the entrepreneurial process from generating creative ideas to exploring feasibility to creating an enterprise for implementing the ideas.

Experience the dynamics of participating on a business team and the power inherent in a team relative to individual effort.

Create and present a business plan for a technology idea.

Provide the background, tools, and life skills to participate in the entrepreneurial process within a large company, in a new venture, or as an investor.

Teaching Method:

Traditional classroom

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Apply the principles of entrepreneurship

CLO2: Apply the theories of entrepreneurship to launch a venture

CLO3: Interpret real-life situations for setting up an enterprise

CLO4: Practice Motivational Theories

CLO5: Analyse entrepreneurship as a career option

CLO6: Use the E-resources for Entrepreneurship

CLO7: Outline Business Ethics and values

	Course Contents:	
1	Introduction to the course 511GE-3	
2	Introduction to entrepreneurship, entrepreneur, importance	
3	Creativity and innovation	
4	Need for innovation and value addition	
5	Entrepreneurial values and attitude	
6	Motivation and achievement	
7	Entrepreneurial opportunities	
8	Setting up and enterprise	
9	Resource mobilization	
10	MSME and entrepreneurial ecosystem	
11	Business plan and strategies	
12	Business incubation	

13 Launching, growing, and ending the	new venture		
14 Revision	Revision		
Textbook (s):			
Entrepreneurship for Engineers, Ke	enji Uchino, CRC Press-Taylor & Francis,		
International Standard Book Number	r: 978-1-4398-0063-8 (Paperback).		
Entrepreneurship, Robert D. Hisric	ch, Michael P. Peters, Dean A. Shepherd,		
Edition9, McGraw-Hill, 2009			
	Step-by-Step Guide for Building a Great		
	orf, K&S Ranch Publishers, 2012, ISBN-13:		
978-0-9849993-0-9.			
Reference Book (s):			
New Venture Creation: Entrepreneurs	ship for the 21st Century, Jeffry A. Timmons,		
Stephen Spinelli Edition10, McGraw-Hill/Irwin, 2016			
Entrepreneurship for Everyone: A Stu	dent Textbook, Robert Mellor, SAGE, 2008		
What Every Engineer Should Kno	w About Starting a High-Tech Business		
Venture, Eric Koester, CRC Press, 20	09		
1	p, Eamonn Butler, Institute of Economic		
Affairs, 2020			
Mode of Evaluation:	Percentage		
Mini project [oral presentation]	5		
Assignments/Quizzes/Conceptual Tests	20		
Mid Examination [Written test]	30		
Group Discussion	5		
Final Examination	40		

Course Title	Internal Combustion	Coordinator		
	Engines			
Course Code	531-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	413-ME-3	Level /Year		9-10/5
Mandatory cour	se			
Course Objecti To enable studen internal combus	nts to understand, define, cl	lassify, design, and a	nalyze	different types of
Teaching Meth Lectures, Lab, T	od: 'utorial, Group discussion			
Expected Learn	ning Outcome:			
1	etion of this course, it is exp	L	nt will l	be able to:
	the working of an IC engin			
-	ish between normal and ab			
•	engine performance param			
	the basic principles of	operation IC engin	ne and	related performance
parameters				
Course				
Contents:				
	Introduction, Engine Types			
2	Engine Design and Operatin	ng Parameters		
3	Thermal cycles			
4	Fuel and combustion			
5	Emission control devices F	Phenomena		
6	I.C.E. fuel systems, carbure	tion, fuel injection		
7	Ignition systems			
8	Engine performance			
9	Supercharging and its effect	on engine performar	ice	
Textbook (s):				
1. Heywoo	od, J.B, "Internal Combust	ion Engine Fundam	entals"	,McGraw-Hill, lates
edition.				
	W. Pukabek, "Engineering ", Prentice Hall, 2 ed., 200		he Inte	rnalCombustion

de of Evalua		10%
1.	Quizzes– Mini Projects	10%
2.	Assignments	10%
3.	Midterm Exam I and II	30%
4.	Lab	10%
5.	Final exam	40%
	Total	100%

Course Title	Energy Conversion	Coordinator			
Course Code	532-ME-3	Credit Hrs.	3	Contact Hrs.	3
Prerequisites	422-ME-3	Level /Year		9-10/5	
Mandatory cours	se				

This course will introduce the student to the basic language and concepts of energy, energy conversion and energy storage. Current and emerging technologies for conversion of thermal, mechanical, chemical, nuclear, solar and electrical energy will be discussed along with an introduction to tools that may be used for comparing competing energy conversion technologies.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Analyse the advantages and limitations of a variety of energy conversion systems

CLO2: Compare competing energy conversion technologies on an economic and efficiency basis

CLO3: Construct multidisciplinary computational performance models of a variety of energy conversion system

CLO4: Perform discussions with colleagues and with teachers to choose and share the appropriate ideas.

Course	
Contents:	
1	Energy, Growth Rate & Energy Economics \cdot energy, energy classification, units energy conversion, conversion efficiency \cdot energy information and perspectives \cdot growth rates, peak oil
2	Thermal-to-Mechanical Conversion · early engines & efficiency · Thermodynamics & power cycles & efficiency · Rankine Cycle · Brayton Cycle
3	Chemical-to-Thermal Conversion \cdot fuels: coal, petroleum, gas \cdot principles of combustion
4	Nuclear-to-Thermal Conversion \cdot principles of nuclear energy \cdot pressurized water reactors \cdot boiling water reactors \cdot boiling water, graphite-moderated reactors Gen-IV reactors
5	Electromagnetic-to-Electrical Conversion \cdot principles of photovoltaic
6	Mechanical-to-Mechanical Conversion · principles of wind energy
7	Chemical-to-Electrical Conversion \cdot principles of fuel cells
8	Introduction to Energy Storagehydrogen \cdot flow batteries \cdot compressed gas, flywheel
Textbook (s	8):
1. Fund	lamentals of Nuclear Science and Engineering, 2nd ed., J. K. Shultis and R. E. Faw,

1. Fundamentals of Nuclear Science and Engineering, 2nd ed., J. K. Shulfis and R. E. Fa CRC Press, ISBN978-1-4200-5135-3 (2008).

- 2. Principles of Energy Conversion, 2nd ed., A. W. Culp, Jr., McGraw-Hill, ISBN 0-07 014892-9 (1991).
- 3. Power Plant Technology, M. M. El-Wakil, McGraw-Hill Book Company, ISBN 0-07-019288-X (1984) any recent Engineering Thermodynamics textbook
- 4. Energy Systems Engineering Evaluation and Implementation, F. M. Vanek & L. D. Albright, McGraw-Hill, Inc., ISBN 978-0-07-149593-6 (2008).
- 5. Solar Engineering of Thermal Processes, 3rd ed., J. A. Duffie and W. A. Beckman, John Wiley & Sons (2006).

Midterm Exam I and II	.30%
Assignments, Projects, Presentations	20%
Quizzes, Take home exams	10%
Final exam	40%

Course Title	Power Plants	Coordinator			
Course Code	533-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	413ME-3	Level /Year		9-10/5	
Elective course					
Course Objectiv	VAC:				

The course aims to provide the student with the basic concepts required to understanding and solving the power plants and desalination problems applied on engineering. Defining the main principles of theoretical and practical information for different power plants. Acquiring some skills of designing steam power plants, gas turbine power plants, and combined cycle power plant.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Define the main principles Steam Power plants.

CLO2: Analyze the various technological applications of desalination plants and selecting the appropriate desalination technology.

CLO3: Compare between the different types of power plants and differentiate the most suitable to provide the energy and the least polluted the environment.

CLO4: Show the Work independently and as part of a team.

Course Contents:	
1	Introduction
2	Ideal and Actual Rankine Cycle (vapor power plant)
3	Alternatives to Improve the Performance on a Rankine Cycle (i.e., Supercritical, Superheat, Reheat, and Regeneration)
4	Ideal and Actual Brayton Cycle (gas-turbine power plant) & Midterm-1
5	Alternatives to Improve the Performance on a Brayton Cycle (i.e., Regenerative Gas Turbine, Reheat, and Intercooling
6	Combined Gas Turbine-Vapor Power Plants
7	Cogeneration Systems and Integrated Gasification Combined-Cycle (IGCC) Power Plant & Midterm-2
8	Desalination Plants

Textbook (s):

- 1. Moran et. al., "Fundamentals of Engineering Thermodynamics", United Kingdom, Wiley, 2020
- 2. El-Dessouky, H.T. and Ettouney, H.M., "Fundamentals of SaltWater Desalination", Elsevier Science, 2002.

Reference Book (s):

1. E l-Wakil, M. M., "Power Plant Technology", McGraw Hill, New York, 2002.

- 2. Raja, A.K., "Power Plant Engineering", New age international ltd, 2006.
- 3. Gill, A.B., "Power Plant Performance", Butterworth-Heinemann , 1404 AH.

4.	Skrrotizki, B.G.A &Vopat, W.A, "Power Station Engineering and Economy", Mc-
	Graw Hill, New York, 1972.

5. Howe, E.D., "Fundamentals of Water Desalination", M. Dekker Publisher, 1974.

Mode of Evaluation:		
Midterm Exam 1	15%	
Midterm Exam 2	15%	
Quizzes and Assignment	5%	
Homework	5%	
Semester project	15%	
Tutorial Sheet	5%	
Final exam	40%	

Course Title	Energy Efficient Buildings	Coordinator		
Course Code	541-ME-3	Credit Hrs.	3	Contact Hrs. 3
Prerequisites	413ME-3	Level /Year		9-10/5
Elective Course	1			1
Course Objecti	ves:			
	g this course, it is expected th		ll be abl	e to:
	nate the optimum cost of energy			
	toring the energy consumption			
	ng energy in refrigeration, air-	-	-	g processes.
	ction of thermal loads and con	*		
	nate the economic loading an			
, ,	e energy saving policies and	use high econom	ic equi	pment's and improve
	sfer processes.			
Teaching Meth				
	utorial, Group discussion			
Expected Learn				
	etion of this course, it is expec			
CLO1: 0	Dutline the fundamentals of en	nergy efficiency ir	ı buildi	ngs.
CLO2: I	dentify energy saving opportu	inities based on a	cost-be	nefit analysis.
CLO3: I	Discuss the contribution of	the building enve	elope to	the energy system.
required	Analyse the impact of mainten to heat, cool and electrically e		•	•
Course				
Contents:	Der lighting heilding ten	1		
1	Day lighting, building topo			
2	Energy efficient buildings climate change.	and the role they	play in	our efforts to address
3	The optimum cost of energy	gy consumption ar	nd build	ing envelope design.
4	The energy consumption in processes.	n refrigeration, air	- condi	tioning and lighting
5	Refrigeration systems with refrigeration).	working gaseous	fluids	(The air- standard
6	Thermal loads and corrects	s the power factor.		
7	The economic loading and	operation for gen	eration	units.
8	Energy saving policies and heat transfer processes	l use high econom	ic equij	oment's and improve
9	Chemical reactions (Fuels Theoretical and actual com enthalpy of combustion. So law analysis of reacting sy	bustion processes teady-flow and clo	s. Entha	lpy of formation and cting systems. First

10	energy efficient	homes in hot arid regions, life- cycle considerations and ency analysis to managing energy demand through					
T 41	equipment s	election.					
	book (s):						
	1. Desideri, Umberto, and Francesco Asdrubali, eds. Handbook of energy efficiency in						
build	ings: a life cycle approach	Butterworth-Heinemann, 2018.					
2. Ja	yamaha L. Energy-Efficie	ent Building Systems: Green Strategies for Operation and					
Main	tenance: Green Strategies	for Operation and Maintenance. McGraw Hill Professional;					
2006	Nov 20.						
Refe	rence Book (s):						
Mod	e of Evaluation:						
1.	Midterm Exam 1	15%					
2.	Midterm Exam 2	15%					
3.	Quizzes and	10%					
4.	Assignment	20%					
5.	Final exam	40%					

Course Title	Desalination	Coordinator			
Course Code	542-ME-3	Credit Hrs.	3	Contact Hrs.	3
Prerequisites	422-ME-3	Level /Year		9-10/5	
Elective Course					
Course Objecti	ves:				
• To provide st desalination	udents with the basic princip methods	les required for unc	lerstand	ing different	
• To provide st	udents with insight into the r	nature of desalination	on.		
To help stude	ents understanding fouling, s	scaling, and pretrea	tment		
• To help stude	ents develop the ability to cal	culate permeate flo	w rate c	of RO systems	
and the total p	roductivity of the other syste	ems.			
Teaching Methe	od:				
Lectures, Lab, T	utorial, Group discussion				
Expected Learn	ning Outcome:				
	etion of this course, it is expe				
	Dutline the basics, theory, an				
	List the different configuration			Plants.	
	dentify the different types of				
	Differentiate between the dif		-		
	Design different components		*		
	stimate the cost of a cubic n				
	lan in-class discussions with	-			
CLO 8: C	Co-operate in a team to condu	act experiments in	desalina	tion.	
Course					
Contents:					
1	Concepts in thermodynar tubes; fouling removal	nics; Water treatme	ents; Fo	uling andscaling of	on
		ltists as arran anotic	a cristo		
	Thermal desalination: Mu Multistage Flash systems				
2	systems(VCD); Solar des				
	• • •	annation systems,	co-gene	ration power	
3	systems.	ystems: Types of n	nembror	nes: membrone	
5		ergy recovery; back			
	fouling; Ultra and nano-f		washin	ig, memorane	
4	Project: Analysis of Desa				
Textbook (s):	Troject. Analysis of Desa	innation rialli			
. ,	uku U T and Ettauraau U M	"Eundomontole of (5-1+ \//~+	or Docalination"	
	uky, H.T. and Ettouney, H.M., Science, 2002, ISBN 978-0-44			er Desaination,	
		+-JUOTO-7			
Reference Book	()	r Inductrial Lleave) urp o 1 ot Ealities	
	Osmosis; A Practical Guide for		•	•	
	k of Desalination and Water	Purification – Arsha	d Hasan	khan and Noam I	lor
by Elsevier					
	. El-Dessouky and Hisham M.	•	entals of	rSalt	
	on, Elsevier Science B.V., 1st , tion Processes and Multistag		D ·	1000 171	7
4. Desalina	trans lug a same a stall Market at a		a lung ati		

Mode	e of Evaluation:		
1.	Midterm Exam 1	15%	
2.	Midterm Exam 2	15%	
3.	Quizzes and	10%	
4.	Assignment	20%	
5.	Final exam	40%	
L			

Course Title	Refrigeration and air Conditioning	Coordinator		
Course Code	543-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	413-ME-3	Level /Year		9-10/5
Mandatory course				

At the end of this course, the students should be able to:

- > Predict the COP of refrigerators and heat pumps,
- Design of evaporators,
- Design of condensers,
- Select and sizing expansion devices,
- Estimating the cooling load, and
- Estimating the air-conditioning load.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Apply and comprehend thermodynamics and heat transfer theories, principles, and concepts on refrigeration and air-conditioning systems.

CLO2: Identify different thermodynamic processes, materials, conventions to illustrate and design different refrigeration systems considering environmental, safety, and economic feasibility.

CLO3: Use knowledge on human comfort and adapt psychrometry processes and charts to solve various practical numerical problems and problems on estimation of the cooling and heating load with an introduction to formulation and design of air-conditioning systems to mee the specified needs.

CLO4: Demonstrate a practical awareness about the working and operational procedures of various compressors, evaporators, condensers, expansion valves, and different.

Co	ourse	
Co	ontents:	
1.	Introducti on	Principles of refrigeration Carnot refrigeration cycle unit of refrigeration Unit of Refrigeration-capacity of refrigeration coefficient of performance-Heat engine-refrigerating machine-heat pump.
2.	Refrigerati on Systems	VapourCompression System – theoretical and practical cycles – system components – compressors – condensers – expansion devices – evaporators – refrigerants. Air refrigeration cycle, Vapour absorption and adsorption refrigeration system- Thermoelectric refrigeration system- Magnetic – Vortex and Pulse tube refrigeration systems.
3.	Refrigeran ts	Desirable properties – Classification – Nomenclature – Testing for leakage- Environmental effects- ODP & GWP.
4.	Psychrom etry	Psychrometric processes – determination of condition of air entering conditioned space. Air conditioning systems – summer, winter and year-round-year air conditioning systems central and unitary systems.

-			
5.	Human	Requirement of air conditioning – hu	
	Comfort	limitations – effective temperature –	
6	Casling	temperature – design considerations	
6.	Cooling and		heat load – solar load equipment load
	Heating		ain fan load moisture gain through
	load	permeable walls and fresh air load, Introduction to design of air condition	
	calculatio	introduction to design of an condition	Jillig systems.
	ns		
7.	Recent	Recent topics over and above the syl	llabus& Revision.
	topics of		
	interest		
Te	xtbook (s):		
	1. McQuis	ton, Parker, Spitler, "Heating Ventilatio	n & Air Conditioning Analysis and Design",
	•	6th ed., 2016. ISBN: 978-1-119-62879-	
	-	- .	ra, 2009, Tata McGraw-Hill, ISBN-13: 978-
_	0-07-00		
Re	ference Boo		
•			ning: A Textbook With Design Data Based
		-	auer, Harry J. , Ronald H. Howell, William
	-	N-13: 978-1883413941	2012 ICDN 12 079
•	125906270	eration and Air conditioning by Ananth	allalayalla, 2013, ISBN-13 978-
	1259002704	+ ASHRAE Hand book, Fundamentals, 20	121
		Jones W.P., "Air conditioning engin	
	Buttory	orth-Heinemann, 2001	eening , 5th eutlon, Lisevier
М	ode of Evalu		
1414		Assignments/Mini project	5%
		Quizzes and Homework	15%
		Mid Examination	30 %
		Laboratory	10%
		2	
		Final exam	40 %

Course Title	Computer Aided Manufacturing	Coordinator			
Course Code	534-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	311-ME-3	Level /Year		9-10/5	
Mandatory course					

- 1. Recognize an engineering drawing of a complex part; and how you will be able to correctly program the part.
- 2. Train on CNC M/C (turning Milling).
- 3. Understand the various elements of the robot system.
- 4. Identify the different types of robots and appreciate the differences between them.
- 5. Understand the various types of robot geometry available.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

- CLO1: Define various elements of the robot's system.
- CLO2: Assess NC part program for the given contour

CLO3: Interpret robot geometric transformations

CLO4: Demonstrate the CNC Turning and Milling independently and as part of a team.

	·
Course	
Contents:	
1	Introduction to CNC machines
2	CNC Turning tools
3	CNC Turning Programming
4	Introduction to CNC Milling machines
5	CNC Milling machines tools
6	CNC Milling Programming
7	Introduction to CNC Drilling
8	Introduction to robot
9	Robot geometries and problems
10	Real time problems on Robot geometries
11	Robot classification, Introduction to Robot Kinematics and problems

Textbook (s):

- 1. Mikell P. Groover, "Automation, Production Systems, and Computer Integrated Manufacturing" 2014 5th Edition
- 2. James A. Rehg, Henry W. Kraebber, "Computer Integrated Manufacturing", Prentice Hall, 3rd ed., 2005.
- 3. Groover, Zimmen, "CAD/CAM Computer Aided Design & Manufacturing", Prentice Hall, 2002.

- 1. James V. Valentino and Joseph G., "Introduction to Computer Numerical Control(CNC)", Pentice-Hall, 2000.
- 2. Kunwoo, L. "Principles of CAD/CAM/CAE", Prentice Hall, 1999.
- 3. Bedworth D., Henderson M. R. & Wolfe P. M. "Computer Integrated Manufacturing" McGraw – Hall, 1999.

1.Quiz-1, Quiz-2 & Quiz-3	15%
2.Midterm-1 & Midterm-2	30%
3.Lab and Report	15%
4. Final Exam	40%

Course Title	Mechanical Behavior of Materials	Coordinator			
Course Code	535-ME-3	Credit Hrs.	3	Contact Hrs.	4
Prerequisites	211-ME-3	Level /Year		9-10/5	
Elective course					

The main aim of this course is to provide knowledge on the application of scientific principles to real-life situations, by using appropriate mechanical tests. The major objectives include:

1. To gain an understanding of the dislocation theory and plastic deformation in order to explain strengthening mechanisms in different materials, materials applications in elevated temperature, fundamental of fracture mechanics, microstructure aspects of fracture toughness, transition temperature, environment-assisted cracking, and fatigue crack propagation.

2. To acquire practical experience in the use of mechanical testing equipment and use of scanning electron microscopy for failure analysis.

3. To cultivate interest in understanding the properties of materials required for various reallife applications.

Teaching Method:

Lectures, Lab, Tutorial, Group discussion

Expected Learning Outcome:

After the completion of this course, it is expected that the student will be able to:

CLO1: Relate the principles of mathematics, chemistry, and physics in the mechanical behaviour of materials and structural design

CLO2: Calculate stress and strain in elastic and plastic deformation.

CLO3: Identify various strengthening mechanisms and its applications.

CLO4: Describe the effect of notches and environments on the material fracture.

CLO5: Demonstrate the application of UTM, Impact Testing, Creep testing, and Fatigue Testing in characterization of materials

CLO6: Illustrate various mechanical testing and its procedures

Course Contents:	
1	Engineering Materials
2	Structure and Deformation in Materials
3	Mechanical Testing: Tension Test and Other Basic Tests
4	Stress–Strain Relationships and Behavior
5	Complex and Principal States of Stress and Strain

6	Yielding and Fracture under Combined Stresses
7	Fundamental of fracture mechanics, microstructure aspects of fracture toughness, the transition temperature
8	Environment-assisted cracking, Stress corrosion cracking, hydrogen embrittlement
9	Fatigue of Materials: Introduction and Stress-Based Approach
10	Notch Sensitivity and Fatigue crack propagation
11	Plastic Deformation Behavior and Models for Material, Microstructural Aspects of Plasticity
12	Dislocation, Slips, Strengthening mechanisms.
13	Time-Dependent Behavior: Creep and Damping

Textbook (s):

- 1. George Ellwood Dieter, Mechanical Metallurgy, McGraw-Hill, 1988
- 2. Marc Meyers and Krishan Chawla (Eds.), Mechanical Behavior of Materials, Cambridge University Press, 2009
- 3. N. E. Dowling. Mechanical Behavior of Materials, 2nd ed. (Prentice Hall: Upper SaddleRiver, NJ) 1999
- 4. T. H. Courtney. Mechanical Behavior of Materials, 2nd ed. (McGraw Hill: Boston)2000

Reference Book (s):

- 1. D. G. Rethwisch and W. D. Callister Jr, Fundamentals of Materials Science and Engineering: An Integrated Approach, John Wiley & Sons, NY, 3rd Edition, 2012.
- Joachim Roesler, Harald Harders, Martin Baeker, Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites, Springer Science & Business Media, 2007
- 3. ASM Metals Handbook, Volume 11, Failure Analysis and Prevention, Metals Park, 1986.
- 4. R. W. Hertzberg. Deformation and Fracture Mechanics of Engineering Materials, 4th ed.(J. Wiley & Sons: New York) 1995.

mout		
1.	Midterm Exam 1	15%
2.	Midterm Exam 2	15%
3.	Quizzes and Assignment	20%
4.	Lab	10%
5.	Final exam	40%

1. Course Number	536-ME-3	Course Name	Composite Materials	
2. Credit hours	3 L = 3	Contact hours	3L = 3 per week	
Level / Year	10/5		1	
3. Course	Dr. Vineet Tirth			
Instructor	Office No. 1-2-085			
Tutorial/Practical	NA			
Instructor				
4. Textbook, title,	Textbook:			
author, and year	Composite Materials: Processing, Applications, Characterizations / edited by Kamal K. Kar. ISBN:9783662495148.			
	a. Other suppleme	ental materials:		
	1. Composite Mate	rials, Chung, D.D.L. (20	010), Springer London	
	ISBN: 978-1-44	71-2547-1, eBook ISBN	: 978-1-84882-831-5	
	DOI: https://doi.	org/10.1007/978-1-8488	32-831-5	
	· ·	rials: Properties as Influe 43852, ISBN-13: 978-3	enced by Phase Geometry 2005th Edition 540243854	
5. Specific course	a. Brief descriptio	n of the content of the	course (catalog description)	
information	This course covers different topics in composite materials such as classification,			
	· · ·	e e	of composites (metal-matrix, ceramic-	
		matrix, reinforced plastics, honeycomb materials, forming structural shapes). Also,		
			of some composite materials will be	
	studied followed by strengthening mechanisms and failure analysis of these types of			
h Duous qui sites	materials.	- Coionae		
b. Prerequisites Co-requisites	211-ME-3 Material Nil	s Science		
c. Required,	Required	Language of	English	
Elective, or	Required	instruction	English	
Selected		Hardware/software	For Blackboard, online quizzes	
elective		usage	Tor Brackobard, online quizzes	
6. Specific goals for	a. Specific outcom	_		
the course	-	the course the student show	uld be able to:	
			ations and applications of composite	
		aterials SO1, KLO1		
	CLO 2 [PI 2.6] St	ate Design Consideratio	ns and Laminate structures SO2, KLO2	
			d fabrication of composites SO1, KLO1	
		-	acteristics of fiber-reinforced materials	
		D1, KLO1		
		•	iber-reinforced materials [S3] (2)	
			v induced stresses in laminates. SO4,	
		KLO5		
		CLO 7 [PI 5.1] Demonstrate various applications of Composite materials		
		dividually and as a grou	· · ·	
		,	. /	

	b. Course Learning	g Outcomes (Mapped w	ith MEP Rubrics, AB	ET SO, NCAAA
	KLO)			
	CLO#	MEP Rubrics:	ABET	NCAAA
		Performance Indicat	or SO#	KLO#
	CLO1	1.1	1	1
	CLO2	2.6	2	2
	CLO3	1.1	1	1
	CLO4	1.3	1	1
	CLO5	1.3	1	1
	CLO6	4.1	4	5
	CLO7	5.1	5	7
7. Brief list of topics	1. Introduction to c	composite materials.		
to be covered	2. Classifications,	types and applications of	of composite materials	
	3. Manufacturing t	3. Manufacturing techniques of composite materials.		
	4. Microstructure of composite materials.			
	5. Mechanical properties of composite materials.			
	6. Strengthening m	nechanisms of composit	e materials.	
	7. Failure mechani	sms of composite mater	rials.	
8. Any other	Course Assessm	ent		
information				
	Activity		sessment% (Marks)	
	Mid Exams 1 and 2	•	% (40 Marks)	
	Quizzes		% (10 Marks)	
	Assignments		o (5 Marks)	
	Presentation		o (5 Marks)	
	Final Exam		% (40 Marks)	
	Total	100	0% (100 Marks)	

Course Title	Fundamentals of Heat Treatment	Coordinator		
Course Code	544-ME-3	Credit Hrs.	3	Contact Hrs. 4
Prerequisites	211-ME-3	Level /Year	-	9-10/5
Elective Course				
Course Objective At the end of the	res: nis course, the students should	be able to:		
1. Discuss the r	nature of metals and alloys.			
2. Recite the pr	inciples of heat treatment of s	teels.		
3. Explain the h	neat treatment processes for st	eels.		
4. Assess the ha	ardenability of metals and allo	bys.		
5. Select the qu	enching media for each heat t	reatment cycle.		
6. Explain the c	chemical heat treatment of ste	els.		
_	proper heat treatment cycle for		v.	
	surface hardening treatment for			
-	hermo-mechanical treatment	-	errous	allove
-				-
Teaching Metho	ifferent types of heat treatmen	it furnaces used in tre	ating r	netais and alloys.
	itorial, Group discussion			
Expected Learn				
-	tion of this course, it is expect	ed that the student w	ill be a	ble to:
	dentify the nature of metals and			
	Examine the hardenability of	•		tify the chemical heat
treatment	-	inclais and anoys an	lu luci	infy the chemical heat
		ant avala far aaah m	atal ar	d allow
	llustrate the proper heat treatm			
	Compare the thermo-mechanic			non-ferrous alloys
CLO 5: In	nterpret the theoretical facts ar	id the experiment res	ults	
Course Contonts:				
Contents:	Introduction to heat treatm	ent		
2	Natural of metals and alloy	/8		
3	Principals of heat treatmen	t of steels		
4	Heat treatment processes for steels			
5	Hardenability and quenching			
6				
7 Surface hardening				
8 Thermo-mechanical treatment				
9				
Textbook (s):	From a cutificate furnaces all			
	, C.P. Sharma, and A. Sharm	a. Heat treatment or	incinle	es and techniques PHI
	Private, New Delhi, 2011 (or	•	morpic	s and coninques, 1 III
8	,	/		

- 1. R.C. Sharma, Principles of heat treatment of steels, New age international (P) Limited, New Delhi, 2003, ISBN: 8122408699.
- 2. B. Zakharov, Heat treatment of metals, USSR, 2002.

Mode	Mode of Evaluation:			
1.	Midterm Exam 1	15%		
2.	Midterm Exam 2	15%		
3.	Quizzes and Assignment	20%		
4.	Laboratory	10%		
5.	Final exam	40%		

Course Title	Finite Element Analysis in	Coordinator			
	Mechanical Design				
Course Code	545-ME-3	Credit Hrs.	3	Contact Hrs.	5
	419-MATH-3				
Prerequisites	421-ME-3	Level /Year		9-10/5	
Elective Course	1				
DescribeApply thAnalyseFormula	npleting this course, it is expe the procedures of FEM to so the FEM to 1D – Structural, the Plane truss problems, using F te axisymmetric and dynamic	lve an engineering ermal and fluid pro ÆA software and p	g proble oblems	m	
Teaching Metho					
	utorial, Group discussion				
Expected Learn	8				
After the comple	tion of this course, it is expecte	ed that the student w	vill be a	ble to:	

- CLO1: Outline the basics of Finite Element Method
- CLO2: Formulate the given problem into finite element model
- CLO3: Apply the mathematical tools to arrive at finite element formulation
- CLO4: Apply FEA to solve structural, thermal and fluid flow problems

0	
Course	
Contents:	
1	Introduction and Basic Concepts of FEA, Matrix Algebra
2	Analysis of trusses-Two dimensional truss element, Stresses, Strains and temperature changes.
3	Beam bending- Two node beam element, Calculation of stresses in beams.
4	Shape functions, Linear and non-linear 1-D elements
5	Two dimensional boundary value problems using triangular elements, Triangular element for general 2D BVP
6	Iso-parametric quadrilateral elements-Shape functions for rectangular elements, quadrilateral elements, Numerical integration for quadrilateral elements, Four node quadrilateral element for 2D BVP
7	Axisymmetric elasticity problems-Governing equations for axisymmetric elasticity, Axisymmetric linear triangular element.
8	Numerical integration for Quadrilateral elements and Triangular elements
Textbook (s):	· ·

1. Finite element analysis: theory and application with ANSYS, Saeed Moaveni, Pearson,

ISBN-13: 9780273774334

2. Applied Finite Element Analysis, LJ Segerlind. 2nd Edition Wiley (1991) ISBN-13: 978-0471806622 ISBN-10: 0471806625

1.	An Introduction to Finite Ele Applications of Finite Eleme	ment Method, J N Reddy, McGraw - Hill. Concepts and nt Analysis, R D Cook, Wiley
Mode	of Evaluation:	
1.	Midterm Exam 1	15%
2.	Midterm Exam 2	15%
3.	Quizzes and Assignment	20%
4.	Laboratory	10%
5.	Final exam	40%

Course Title	Nano technology	Coordinator				
Course Code	546-ME-3	Credit Hrs.	3	Contact Hrs.	3	
Prerequisites	rerequisites 211-ME-3			9-10/5		
Mandatory cour	se			•		
Course Objecti	ves:					
	is to introduce students to			A A	•	
-	rated circuits (IC) includ	ling photolithography	y, etch	ing, LIGA, and	other	
microscopic fab	rications.					
Teaching Meth	od:					
U	utorial, Group discussion					
Expected Learn						
	etion of this course, it is ex		nt will l	be able to:		
	e the principles of nanotech					
	he concept of surface ene	rgy, chemical potent	ial and	l analyzing electro	ostati	
stabilization						
•	various production technic	-		~ ~		
	e various nanomaterials an	d compare them base	d on th	eir properties.		
Course Contents:						
1	Emergence and challenges of Nanotechnology					
1	8	8	55			
2	Physical Chemistry of solid surfaces					
3	Development and application of Nano particles, nano wires, nano rods and					
	thin films					
4	nd nano	otubes, micro and				
	mesoporous materials					
5	Nano structures fabricated by Physical Techniques					
6	Structural and Chemical Characterization and properties of nano materials					
	(Use of XRD, SEM, TEM, AFM)					
7	Application of Nano m	aterials				
Textbook (s):						
1. Marc J. Mad	ou, Fundamentals of Microf	abrication: The Science	e of M	iniaturization, Seco	ond	
Edition, CRO	C Press, 2018, ISBN: 14822	74000, 978148227400	4			
2. Stephen A. C	Stephen A. Campbell,"he Science and Engineering of Microelectronic Fabrication (Oxford					
	trical and computer enginee	ering)Edition-2, Oxfore	d Unive	ersity Press, 2001, 1	ISBN	
	, 9780195136050					
Reference Bool						
 Julian Serda 	, Michael Quirk, " Semic	conductor Manufactur	ring Te	echnology, Interna	ationa	

- Julian Serda, Michael Quirk, "Semiconductor Manufacturing Technology, International Edition", Pearson Education, Limited, 2000, ISBN: 0131229370, 9780131229372
- Hans H. Gatzen, Volker Saile, Jürg Leuthold, "Micro and Nano Fabrication: Tools and Processes", Springer, 2015, ISBN:3662443953, 9783662443958=

Mode of Evaluation:	
Mid-Term Tests (Not less than two Exams)	(30 %)
Quizzes, ,	(10 %)
Assignments	(20%)
Final Exam	