

لمملكة العربية السعودية الهيئة الوطنية للتقويم الاعتماد الأكاديمي

Course Title	Electric Machines 1
Course Code	EE3306
No. of Credit Hrs (Lecture + Tutorial + Lab)	3 (2+0+1)
No. of Contact Hrs (Lecture + Tutorial + Lab)	4 (2+0+2)
Level-Year	6-3
Prerequisite (if any)	EE3300

1) Course Objectives:

This course aims at providing the basic knowledge required by practicing engineers to have a good understanding of electromechanical energy conversion principals. The different types of direct-current machines and transformers are discussed throughout this course which is necessary for the students in order to:

- 1. Enhance the knowledge on the main types of direct-current machines and transformers
- 2. Understand the main characteristics of direct-current machines and transformers
- 3. Be able to design direct-current machines and transformers
- 4. Derive the equivalent circuit of direct-current machines and transformers
- 5. Comprehend the main characteristics of transformers and their type and routine tests
- 6. understand the concept of instrument transformers.

2) Expected Learning Outcomes:

Upon completion of this course, student will be able to:

- 1. Summarize and evaluate the advantages and disadvantages of different methods used to control the speed of direct-current motors, engaging in continuous learning. KLO9 [7]
- 2. Identify and distinguish the different types of direct-current machines and transformers. KLO1 [1]
- 3. Create and formulate mathematical models for different types of direct-current machines and transformers. KLO4
- 4. Solve and analyze problems related to direct-current machines and transformers, and validate their performance. KLO1 [1]
- 5. Investigate and examine the different methods of controlling the speed of direct-current motors. KLO3 [6]
- 6. Conduct experiments on the fundamental concepts and working principles of various electrical machines, analyze results, and conclude findings. KLO3 [6]

3) Course Contents:

- 1. An overview of the electromagnetic energy conversion
- 2. Transformer types and basic principles and theory of transformers operation
- 3. Equivalent-Circuit and the characteristics of ideal transformer
- 4. Transformer's voltage regulation and efficiency calculations
- 5. Parameter's calculation of transformers from open circuit test and short circuit test data
- 6. Cooling methods of power transformer
- 7. Autotransformer (Step-Up and Step-Down)

Kingdom of Saudi Arabia National Commission for Academic Accreditation & Assessment

المملكة العربية السعودية الهيئة الوطنية التقويم والاعتماد الأكاديمسي

- 8. Three-Phase Transformers
- 9. An overview of the electromagnetic energy conversion
- 10. Construction and theory of operation of direct-current machines
- 11. Magnetic circuit and armature reaction of direct-current machines
- 12. Performance analysis of the different types of direct-current generators and motors.

4) Lab content

- 1. Assembly and disassembly of DC machine and speed control of separately excited DC motor.
- 2. Study of torque vs. speed characteristics of DC shunt motor and calculation of regulation and efficiency.
- 3. Study of torque vs. speed characteristics of DC series motor and calculation of regulation and efficiency.
- 4. Transformer open/short circuit tests.
- 5. DC generator loaded/No-loaded performance test.

5) Teaching Methods:

- Lectures and Discussion
- Videos
- Self-learning
- Laboratory demonstrations

6) Mode of Evaluation: Course Assessment Methods

- Quizzes and assignment
- Major Exams
- Final Exam
- Lab Work

Evaluation

Semester Work

Major Exams	30%
Quizzes	5%
Assignments	5%
Lab/Tutorial	20%
Final	
Paper work	40%

7) Textbook(s):

- P. C. Sen, Principles of Electric Machines and Power Electronics
- Stephen J. Chapman, Electric Machinery Fundamentals

8) References:

- Course Notes: Presentation slides is submitted to student every lecture
- Recommended Books: Theodore Wildi, Electrical Machines, Drives and Power Systems Periodicals, Web Sites, ... etc: To be cited during the course

