

Course Title	Automatic Control
Course Code	EE3409
No. of Credit Hrs (Lecture + Tutorial + Lab)	4 (3+0+1)
No. of Contact Hrs (Lecture + Tutorial + Lab)	5 (3+0+2)
Level-Year	6-3
Prerequisite (if any)	EE3302

1) Course Objectives:

The main objective of the course is to acquire the basic concepts of control systems' analysis; particularly, to learn the basics of control systems representations/modeling and stability analysis (in time and frequency domains), in addition to practical experiment in the laboratory.

2) Expected Learning Outcomes:

Upon completion of this course, student will be able to:

- 1. Identify and describe the fundamentals of modeling electrical, mechanical, and electromechanical systems. KLO1 [1]
- 2. Summarize and explain the properties of feedback control systems and basic control actions. KLO1
- 3. Apply control system design techniques to single-variable continuous systems in both time and frequency domains. KLO2 [2]
- 4. Model and investigate electrical, mechanical, and electromechanical systems using practically relevant techniques. KLO3 [6]
- 5. Communicate and collaborate effectively in teams to propose simple and relevant control system applications. KLO7 [5]
- 6. Engage in self-directed learning to explore modern control strategies and their applications. KLO9 [7]

3) Course Contents

- 1. System Representation,
- 2. State Variable Analysis,
- 3. Stability Analysis,
- 4. Time Domain Analysis,
- 5. Root Locus, Bode Plots, Nyquist Plots,
- 6. System Modelling,
- 7. Introduction to Basic Control Design.

4) Automatic Control Lab Contents:

Experiments are organized in several groups of real time applications, such as:

- 1. Step Response analysis of 1st and 2nd order System.
- 2. Frequency Response of 1st and 2nd order System.
- 3. Root Locus Plot of a given system.
- 4. Bode plots of a given system
- 5. Nyquist plots of a given system
- 6. Lead-Lag compensation design

Kingdom of Saudi Arabia National Commission for Academic Accreditation & Assessment

المملكة العربية السعودية الهيئة الوطنية للتقويم والاعتماد الأكاديمسي

- 7. PID controller design
- 8. Speed control of DC motor
- 9. Position Control.

5) Teaching Methods:

- Lectures and Discussion
- Videos
- Self-learning
- Laboratory demonstrations

6) Mode of Evaluation: Course Assessment Methods

- Quizzes and assignment
- Major Exams
- Final Exam
- Lab Work

Evaluation

Semester Work

Major Exams	30%
Quizzes	5%
Assignments	5%
Lab/Tutorial	20%
Final	
Paper work	40%

7) Textbook(s):

- Control System Engineering, Norman S. Nise, 5th Edition, John Wiley &Sons
- Lab Manual.

8) References:

- Modern Control Engineering (4th edition) by K. Ogata, 2002
- Feedback Control of Dynamic Systems by Gene F. Franklin, J. David Powell and Abbas Emami Naeini, 4th Edition, Prentice Hall, 2002.

