

Course Title	Digital Control Systems
Course Code	EE5306
No. of Credit Hrs (Lecture + Tutorial + Lab)	3 (2+0+1)
No. of Contact Hrs (Lecture + Tutorial + Lab)	4 (2+0+2)
Level-Year	9-5
Prerequisite (if any)	EE3409

1) Course Objectives:

The main objective of this course is to introduce the fundamental concepts, principles and application of digital control system analysis. The students will gain familiarity with various aspects of digital control engineering which covers both classical control design methods as well as the modern control design techniques. A variety of problems/exercises are included to illustrate the concepts clearly.

2) Expected Learning Outcomes:

- 1. **Describe and explain** the fundamentals of digital control systems, including stability concepts and state-variable models. **KLO1** [1]
- 2. Analyze the issues in sampling, digital data, and discrete-time systems. KLO1 [1]
- 3. **Design and implement** digital controllers using methods such as emulation of continuous-time compensators, root locus, and frequency response approaches. **KLO2 [2]**
- 4. **Evaluate and justify** the economic and environmental impacts of applying digital automatic control techniques. **KLO5** [4]
- 5. **Collaborate and manage** teamwork to identify digital control problems of contemporary relevance and implement solutions using hardware or software. **KLO7** [5]
- 6. **Communicate** project outcomes and technical findings effectively through structured reports and presentations. **KLO8 [3]**

3) Course Contents

- 1. Introduction, digital control system and analog control system.
- 2. Discrete time systems and the Z-transform and properties of the Z-transform.
- 3. Solution of difference equations.
- 4. The inverse Z-transform, simulation diagrams and flow graphs.
- 5. State variables, transfer functions, solutions of the state equations.
- 6. Sampling and reconstruction.
- 7. Open-loop discrete time systems.
- 8. State variable models, discrete state equations.
- 9. Closed-loop systems: derivation procedure, state-variable models.
- 10. Controllability and observability.
- 11. Stability analysis techniques.

7. Teaching Methods:

- Lectures and Discussion
- Videos
- Self-learning

Kingdom of Saudi Arabia National Commission for Academic Accreditation & Assessment

المملكة العربية السعودية الهيئة الوطنية للتقويم والاعتماد الأكاديمسي

Tutorial sheets

8. Mode of Evaluation: Course Assessment Methods

- Quizzes and assignments
- Major Exams
- Final Exam

Evaluation

Semester Work

Major Exams	30%
Quizzes and Homework	10%
Assignments	10%
Tutorial (Homework, Mini-project, Report, Long essay)	10%
Final	
Paper work	40%

9. Textbook(s):

Charles, Phillips and Nagle "Digital Control System Analysis and Design", Prentice-Hall,
2000.

10. References:

K. Ogata, "Discrete-Time Control Systems," Second Edition, Prentice Hall, 1995

