

Course Title	Electric Machines 2
Course Code	EE5311
No. of Credit Hrs (Lecture + Tutorial + Lab)	3 (2+0+1)
No. of Contact Hrs (Lecture + Tutorial + Lab)	4 (2+0+2)
Level-Year	9/10 – 5
Prerequisite (if any)	EE3306

1) Course Objectives:

This course aims at providing the basic knowledge required by practicing engineers for dealing with induction and synchronous machines in order to:

- 1. Describe construction and the principle of operation of induction and synchronous machines K1 [7]
- 2. Improve knowledge for the construction and the principle of operation of the three-phase induction and synchronous machines.
- 3. Acquire information concerning the equivalent circuit and different experimental tests of a three-phase induction and synchronous machines.
- 4. Help dealing with the power relation and characteristic curves of the three-phase induction and synchronous machines.
- 5. Enable studying the methods of speed control and starting of induction motor.
- 6. Enhance thought about the equivalent circuit, starting methods of a single-phase induction motor.
- 7. Ability to conduct no load and full load tests on transformers/Induction Motor.
- 8. Ability to perform test on synchronous Machine

2) Expected Learning Outcomes:

- 1. **Describe and explain** the construction and operating principles of induction and synchronous machines. **KLO1** [1]
- 2. **Estimate and apply** experimental test results to determine key parameters of induction and synchronous machines. **KLO3** [6]
- 3. Analyze and differentiate various methods for controlling the speed and starting of induction and synchronous machines. KLO2 [2]
- 4. **Formulate and solve** mathematical models to calculate voltage regulation and efficiency of synchronous machines. **KLO1** [1]
- 5. **Investigate and evaluate** different methods of calculating voltage regulation and performance characteristics of synchronous machines. **KLO3 [6]**
- 6. **Communicate** findings effectively by preparing structured reports on laboratory experiments. **KLO8** [3]

3) Course Contents:

- 1. AC armature windings.
- 2. Three phase induction motor types, Construction, principles of operation and modes of operation
- 3. Equivalent circuit and measurement tests of a three-phase induction motor (I.M)
- 4. Power balance equations, torque/speed curves of a 3 phase I.M.
- 5. Speed control methods of a 3 phase I.M.

Kingdom of Saudi Arabia National Commission for Academic Accreditation & Assessment

المملكة العربية السعودية الهيئة الوطنية للتقويم والاعتماد الأكاديمسي

- 6. Starting methods of a three-phase induction motor of a 3 phase I.M.
- 7. Construction of synchronous.
- 8. Armature reaction, armature leakage reactance and equivalent circuit of cylindrical synchronous machine.
- 9. Equivalent circuit of salient pole synchronous machine.
- 10. Voltage regulation for unity, lagging and leading power factor loads.
- 11. Parallel operation and synchronizing torque.
- 12. Equivalent circuit of synchronous motors and Synchronous motor starting.
- 13. V-curves and synchronous condenser.

4) Lab Contents:

- 1. To measure the performance of 3-phase im by direct loading
- 2. Brake test on 3-phase induction motor
- 3. No load & blocked rotor test on 3-φ induction motor
- 4. Regulation of an alternator by synchronous impedance & mmf method
- 5. Determination of x_d & x_q of a salient pole synchronous machine
- 6. V & inverted V curves of synchronous motor

5) Teaching Methods:

- Lectures and Discussion
- Videos
- Self-learning
- Laboratory demonstrations

6) Mode of Evaluation: Course Assessment Methods

- Quizzes and assignment
- Major Exams
- Final Exam
- Lab Work

Evaluation

Semester Work

	Major Exams	30%
	Quizzes	5%
	Assignments	5%
	Lab/Tutorial	20%
•	Final	
	Paper work	40%

7) Textbook(s):

- P. C. Sen, "Principles of Electric Machines and Power Electronics".
- Stephen J. Chapman, "Electric Machinery Fundamentals".
- B.L. Theraja and A.K.Theraja, "Electrical Technology".

7. References:

- Theodore Wildi, "Electrical Machines, Drives and Power Systems".

