

Course Title	Information Theory and Coding
Course Code	EE5321
No. of Credit Hrs (Lecture + Tutorial + Lab)	3 (2+0+1)
No. of Contact Hrs (Lecture + Tutorial + Lab)	4 (2+0+2)
Level-Year	9/10-5
Prerequisite (if any)	MATH3301, STAT1211

1) Course Objectives:

To impart both theoretical and practical aspects of the information and Coding Theory. Students shall develop a mathematical understanding about information, channel capacity, and channel coding techniques. This course also give insight to channel and error-correction coding techniques.

2) Expected Learning Outcomes:

After completing this course, the students should be able to:

- 1. Describe and explain the fundamentals of information theory, source coding, channel models, channel capacity, and channel coding. KLO1 [1]
- 2. Identify and classify different types of block codes and convolutional codes. KLO1 [1]
- 3. Calculate and evaluate key parameters such as entropy, channel capacity, bit error rate, and code rate. KLO1 [1]
- 4. Investigate and perform laboratory experiments on essential techniques in information and coding theory. KLO3 [6]
- 5. Communicate and present applications of information and coding theory effectively through technical reports. KLO8 [3]
- 6. Engage in life-long learning by exploring modern coding methods and their applications in advanced communication systems. KLO9 [7]

3) Course Contents

- 1. Entropy, Mutual information, Source coding theorem, Data compression, Huffman coding, Asymptotic equipartition property
- 2. Gaussian channel, Discrete memoryless channels BSC, BEC, Channel capacity, Shannon limit, Channel coding theorem
- 3. Differential entropy, Hamming weight, Hamming distance, Minimum distance decoding Single parity codes, Hamming codes, Repetition codes
- 4. Linear block codes, Cyclic codes Syndrome calculation, Encoder and decoder CRC
- 5. Convolutional codes code tree, trellis, state diagram Encoding Decoding: Sequential search and Viterbi algorithm
- 6. Principles of Turbo coding.

4) Lab Experiments

- 1. Write a program to determine the entropy and mutual information of a given channel.
- 2. Generation and evaluation of Huffman code.
- 3. Write program to compare the channel capacity of different types of channels.
- 4. Coding and decoding the data using Linear block codes.

Kingdom of Saudi Arabia National Commission for Academic Accreditation & Assessment

المملكة العربية السعودية الهيئة الوطنية الوطنية والاعتماد الأكاديمي

- 5. Coding and decoding the data using convolutional codes.
- 6. Performance comparison of coded and uncoded communication system.
- 7. Write a program to implement the source coding and channel coding for transmitting a text file.

Use MATLAB/Octave/Scilab/Python/C++ or any other feasible programming software/language for the above experiments.

5) Teaching Methods:

- Lectures and Discussion
- Videos
- Self-learning
- Laboratory demonstrations

6) Mode of Evaluation: Course Assessment Methods

- Quizzes and assignment
- Major Exams
- Final Exam
- Lab Work

Evaluation

Semester Work

	Major Exams	30%
	Quizzes	5%
	Assignments	5%
	Lab/Tutorial	20%
in		

Paper work

7) Textbook(s):

- Thomas M. Cover and Joy A. Thomas, "Elements of Information Theory", Wiley, 2006.
- Robert H. Morelos-Zaragoza, "The Art of Error Correcting Codes", John Wiley & Sons, 2006

8) References:

- Todd K. Moon, "Error Correction Coding", Wiley Inter-Science, 2005

40%