

Course Specification — (Bachelor)

Course Title: Operations Research I

Course Code: INE 3321

Program: Bachelor of industrial engineering

Department: Industrial Engineering

College: College of Engineering

Institution: King Khalid University, Abha, Saudi Arabia

Version: 2

Last Revision Date: 17-12-2025

Table of Contents

A. General information about the course:	3
B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods	4
C. Course Content	6
D. Students Assessment Activities	7
E. Learning Resources and Facilities	7
F. Assessment of Course Quality	7
G. Specification Approval	8

A. General information about the course:

1. Course Identification

1. Credit hours: (3)

2. Course type

A.	<input type="checkbox"/> University	<input type="checkbox"/> College	<input checked="" type="checkbox"/> Department	<input type="checkbox"/> Track	<input type="checkbox"/> Others
B.	<input checked="" type="checkbox"/> Required		<input type="checkbox"/> Elective		

3. Level/year at which this course is offered: (6/3)

4. Course general Description:

This course introduces the fundamental concepts and techniques of Operations Research (OR) for engineering and management applications. It focuses on developing analytical and quantitative problem-solving skills through the formulation and solution of optimization models. Students learn how to translate real-world decision-making problems into mathematical models and apply appropriate solution methods.

The course covers linear programming, including graphical analysis, the Simplex algorithm, the Big-M method, and duality theory with economic interpretation. Emphasis is placed on sensitivity analysis to evaluate the impact of parameter changes on optimal solutions. Classical OR applications such as transportation, and assignment models are studied to address logistics, resource allocation, and flow problems.

Through problem solving and practical examples, students gain the ability to analyze complex systems, interpret optimal solutions, and support effective decision making in engineering and industrial systems.

5. Pre-requirements for this course (if any):

MATH 2301

6. Co-requisites for this course (if any):

NIL

7. Course Main Objective(s):

By the end of this course, students will be able to:

1. Understand the role and importance of Operations Research in engineering and managerial decision-making.
2. Formulate real-world problems as mathematical optimization models.

3. Apply linear programming techniques to solve resource allocation and planning problems.
4. Use the Simplex algorithm and Big-M method to obtain optimal solutions for constrained optimization problems.
5. Analyze duality theory and interpret its economic and managerial implications.
6. Perform sensitivity analysis to assess the impact of changes in model parameters on optimal solutions.
7. Solve practical problems using transportation and assignment models.
8. Enhance logical, analytical, and quantitative problem-solving skills relevant to industrial and systems engineering applications.

2. Teaching mode (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	60	100
2	E-learning		
	Hybrid		
3	<ul style="list-style-type: none"> • Traditional classroom • E-learning 		
4	Distance learning		

3. Contact Hours (based on the academic semester)

No	Activity	Contact Hours
1.	Lectures	30
2.	Laboratory/Studio	15
3.	Field	
4.	Tutorial	15
5.	Others (specify)	
Total		60

B. Course Learning Outcomes (CLOs), Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.0	Knowledge and understanding			

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
1.1	Demonstrate knowledge of fundamental concepts and principles of Operations Research and optimization.	K1		Assignments Midterm Exam Final Exam
	Understand linear programming models, assumptions, and solution methods	K2		
	Explain duality theory and its economic interpretation in decision-making problems.	K3		
1.2	Recognize applications of transportation, assignment, and network models in industrial systems.	K4		Assignments Midterm Exam Final Exam
2.0	Skills			
2.1	Formulate real-world engineering problems into appropriate mathematical optimization models.	S1		
2.2	Solve linear programming problems using graphical and algorithmic methods such as the Simplex method.	S2		Assignments Midterm Exam Final Exam
2.3	Apply Big-M and related techniques to	S3		

Code	Course Learning Outcomes	Code of CLOs aligned with program	Teaching Strategies	Assessment Methods
	handle constrained optimization problems			
2.4	Perform sensitivity analysis and interpret the effects of parameter changes on optimal solutions.	S4		
2.5	Analyze and solve transportation and assignment problems efficiently	S5		
2.6	Develop and analyze network models for flow, shortest path, and project scheduling problems.	S6		
3.0	Values, autonomy, and responsibility			

C. Course Content

No	List of Topics	Contact Hours
1.	Introduction	4
2.	Formulate Operation Research problems	6
3.	Linear programming	8
4.	Simplex algorithm	8
5.	Big M method	9
6.	Duality and economic analysis	6
7.	Sensitivity analysis	8
8.	Transportation and Assignment Problems	10
Total		60

D. Students Assessment Activities

No	Assessment Activities *	Assessment timing (in week no)	Percentage of Total Assessment Score
1.	Assignments	6, 9, 14	15%
2.	Quizzes	7, 14	10%
3.	Midterm 1	7	15%
4.	Case study	15	5%
5.	Final practical exam	14	15%
6.	Final exam	15	40%

*Assessment Activities (i.e., Written test, oral test, oral presentation, group project, essay, etc.).

E. Learning Resources and Facilities

1. References and Learning Resources

Essential References	<ul style="list-style-type: none"> Introduction to Operations Research: 2024 Release, Hillier & Lieberman, 2024, 12th Edition, Mc Graw Hill.
Supportive References	Linear Algebra and its Applications, David C. Lay; Steven R. Lay; Judi J. McDonald, 5 th Edition, Pearson, 2015, ISBN-13: 9780321982384, ISBN-10: 032198238X
Electronic Materials	
Other Learning Materials	

2. Required Facilities and equipment

Items	Resources
facilities (Classrooms, laboratories, exhibition rooms, simulation rooms, etc.)	<ul style="list-style-type: none"> Classroom with 50 seats Laboratory with 25 seats
Technology equipment (projector, smart board, software)	<ul style="list-style-type: none"> Computer system Projector
Other equipment (depending on the nature of the specialty)	

F. Assessment of Course Quality

Assessment Areas/Issues	Assessor	Assessment Methods
Effectiveness of teaching	Student and faculty	Indirect through surveys
Effectiveness of Students' assessment	Quality Committee	Direct through Rubrics

Assessment Areas/Issues	Assessor	Assessment Methods
Quality of learning resources	Student and faculty	Indirect through surveys (Student, faculty)
The extent to which CLOs have been achieved		
Other		

Assessors (Students, Faculty, Program Leaders, Peer Reviewer, Others (specify)

Assessment Methods (Direct, Indirect)

G. Specification Approval

COUNCIL /COMMITTEE	REVIEWED BY CURRICULUM COMMITTEE APPROVED BY QUALITY COMMITTEE
REFERENCE NO.	9-6-47
DATE	25/06/1447

