

College of Engineering – King Khalid University

Bachelor of Science (BSc.) in Civil Engineering New Program Study Plan

(Revised as per trimester system-1444)
Distribution of Courses over Different Levels

September 2022

TABLE OF CONTENTS

First Year- Common Engineering Year	4
Second Year: Civil Engineering Department	5
Third Year: Civil Engineering Department	6
Summer Internship	7
Fourth Year: Civil Engineering Department	8
Fifth Year: Civil Engineering Department	9
Elective Courses	10
Course Requirements	11
University Requirements	11
College Requirements	11
Math & Basic Sciences	11
Soft Skills	12
Free Courses	12
Total Non- Engineering Courses	12
Common Engineering Courses	12
Civil Engineering Courses	13
Descriptions of BSc. Civil Engineering Core Courses	15
Statics	16
Mechanics of Materials	18
Surveying	20
Fluid Mechanics	22
Construction Materials	24
Dynamics	26
Structural Analysis-1	28
Hydraulics	30
Geographic Information System (GIS)	32
Structural Analysis-2	34
Reinforced Concrete-1	36
Soil Mechanics	38
Transportation Engineering	40
Civil Engineering Drawing	42

Hydrology	44
Foundations Engineering-1	46
Design of Steel Structures	48
Construction Management	50
Reinforced Concrete II	52
Senior Design Project-1	54
Industry and the Environment	56
Construction Engineering.	57
Senior Design Project-2	58
Computer Aided Design	60
Advanced Reinforced Concrete Design	62
Bridge Engineering	64
Foundations Engineering-2	66
Environmental Engineering	67
Groundwater Engineering	69
Open Channel Hydraulics	71
Remote Sensing of the Environment	73
Advanced Geographic Information System: (Advanced GIS)	75
Traffic Engineering.	77
Highway Design and Construction	78
Pavement Design and Material	80

First Year- Common Engineering Year

L	evel 1			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
011-ENG-6	English Intensive Program 1	6	12	
107-CHEM-6	General Chemistry	6	7	
201-ARAB-2	Language Skills	2	2	
Total No. Of C	redits/Contact Hrs	14	21	

L	evel 2			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
012-ENG-6	English Intensive Program 2	6	12	011-ENG-6
119-MATH-5	Differentiation and Integration -1	5	5	
111-ICI-2	The Entrance to the Islamic Culture	2	2	
Total No. Of C	redits/Contact Hrs	13	19	

L	evel 3			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
112-ICI-2	Islamic Culture -2	2	2	
219-MATH-5	Differentiation and Integration -2	5	5	119-MATH-5
129-PHYS-6	Physics -1	6	7	
104 CMS-3	Computer Science	3	5	
Total No. Of C	redits/Contact Hrs	16	19	

Second Year: Civil Engineering Department

L	evel 4			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
111-GE-4	Engineering Drawing	4	8	
218-EE-4	Electric Engineering - 1	4	5	129-PHYS-6 219-MATH-5
229-MATH- 5	Differentiation and Integration-3	5	5	219-MATH-5
211-GE-3	Learning Skills	3	3	
Total No. Of C	redits/Contact Hrs	16	21	

L	evel 5			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
221-ME-4	Production Technology and Workshop	4	7	111-GE-4
211-CE-5	Statics	5	7	129-PHYS-6
219-PHYS-6	Physics-2	6	7	129-PHYS-6
113-ICI-2	Islamic Culture-3	2	2	
Total No. Of C	redits/Contact Hrs	17	23	

L	evel 6			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
224-CE-5	Surveying	5	7	119-MATH-5
223-CE-5	Mechanics of Materials	5	6	211-CE-5
221-GE-3	Creativity and Innovation	3	3	
319-MATH- 5	Differential Equations	5	5	219-MATH-5
Total No. Of C	redits/Contact Hrs	18	21	

Third Year: Civil Engineering Department

L	evel 7			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
202-ARAB- 2	Arabic Writing	2	2	
312-CE-5	Construction Materials	5	6	223-CE-5
314-CE-3	Dynamics	3	3	211-CE-5
329-MATH- 4	Linear Algebra	4	4	
Total No. Of C	redits/Contact Hrs	14	15	

L	evel 8			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
114-ICI-2	Culture-4 Islamic	2	2	
321-CE-5	Structural Analysis - 1	5	6	223-CE-5
311-CE-5	Fluid Mechanics	5	7	211-CE-5
	Elective 1 (Soft Skills)	3	3	
Total No. Of C	Credits/Contact Hrs	15	18	

L	evel 9			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
301-ENG-3	Technical Reports Writing	3	3	012-ENG-6
322-CE-5	Hydraulics	5	6	311-CE-5
324-CE-6	Geographic Information Systems	6	7	
329-STAT-3	Principles of Statistics and Probability	3	3	
Total No. Of C	redits/Contact Hrs	17	19	

Summer Internship

Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
400-CE-0	Summer Training	0	0	After completing 130 Cre.Hrs.

After the successfully completion of 9 level (9^h trimester), student has directed to attend a compulsory Professional Internship (Full time summer Training) in an industrial institution. Requirement for professional internship, as per the prerequisite for registration, the number of hours should be completed 130 hours. The student will train in an appropriate environment for not less than eight weeks (five days per week). A report will then be submitted to the department, and will be a graduation requirement. The evaluation will be undertaken at department level, alongside confidential feedback from the organisations concerned.

Fourth Year: Civil Engineering Department

Level 10				
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
412-CE-5	Structural Analysis - 2	5	6	321-CE-5
414-CE-6	Soil Mechanics	6	8	223-CE-5
419-MATH-5	Numerical Methods	5	5	319-MATH- 5
Total No. Of Credits/Contact Hrs		16	19	

Level 11				
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
413-CE-5	Reinforced Concrete - 1	5	6	321-CE-5
422-CE-4	Civil Engineering Drawing	4	6	111-GE-4
423-CE-5	Hydrology	5	6	311-CE-5
411-GE-3	Professional Ethics and Practice	3	3	
Total No. Of Credits/Contact Hrs		17	21	

Level 12				
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
421-CE-6	Transportation Engineering	6	7	224-CE-5
425-CE-5	Design of Steel Structures	5	6	412-CE-5
424-CE-5	Foundation Engineering - 1	5	6	414-CE-6 413-CE-5
Total No. Of Credits/Contact Hrs		16	19	

Fifth Year: Civil Engineering Department

	Level 13			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
598-CE-4	Senior Design Project	4	4	Passing 174 credit hours
501-CE-5	Reinforced Concrete - 2	5	6	413-CE-5
	Elective - 2	4	5	
Total No. C	Of Credits/Contact Hrs	13	15	

Level 14				
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
591-CE-4	Special topics	4	4	
581-CE-3	Construction Management	3	3	
	Elective - 3	4	5	
	Elective - 4	4	5	
Total No. Of Credits/Contact Hrs		15	17	

	Level 15			
Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
561-CE-3	Industry and the Environment	3	3	
582-CE-3	Construction Engineering	3	3	
	Elective - 5	4	5	
311-IE-3	Engineering Economy	3	3	
Total No. Of Credits/Contact Hrs		13	14	

Elective Courses

Elective 1

Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
311-GE-3	Knowledge Management	3	3	
321-GE-3	Design Thinking	3	3	
322-GE-3	System Dynamics	3	3	

Elective courses (2), (3), (4) and (5) are selected according to the following:

- 1- The student interested in the structural engineering track: selects only structural engineering courses from the list of elective courses
- 2- The student interested in the water and environmental engineering track: he chooses water and environmental engineering courses only from the list of elective courses
- 3- The student wishing to study the transportation engineering track: he chooses transportation engineering courses only from the list of elective courses
- 4- A student desiring a general track: he chooses the elective courses without being restricted to any track

Elective 2 - Elective 3 - Elective 4 - Elective 5

Course N° and Code	Course Title	Credit Hours	Contact Hours	Pre- requisite
521-CE-4	Foundation Engineering (II)	4	5	424-CE-5
562-CE-4	Environmental Engineering	4	5	322-CE-5
541-CE-4	Advanced GIS Engineering	4	5	324-CE-6
502-CE-4	Computer Aided Design	4	5	422-CE-5 413-CE-5 425-CE-5
563-CE-4	Groundwater Engineering	4	5	322-CE-5 423-CE-5
542-CE-4	Traffic Engineering	4	5	421-CE-6
503-CE-4	Advanced Reinforced Concrete Design	4	5	501-CE-5
564-CE-4	Open Channel Hydraulics	4	5	322-CE-5
543-CE-4	Highway design and construction	4	5	421-CE-6
504-CE-4	Bridge Engineering	4	5	501-CE-5 425-CE-5
565-CE-4	Remote sensing of the Environment	4	5	224-CE-5 324-CE-6
544-CE-4	Pavement design and Materials	4	5	312-CE-5 421-CE-6

Course Requirements

University Requirements

Sl.No.	Course Code &	Course Title	Credit /Contact hrs
	No.		
1	111-IC1-2	The Entrance to the Islamic Culture	2/2
2	112-IC1-2	Islamic Culture - 2	2/2
3	113-IC1-2	Islamic Culture - 3	2/2
4	114-IC1-2	Islamic Culture - 4	2/2
5	201-ARAB-3	Language Skills	3/3
6	202-ARAB-2	Arabic Writing	2/2
		Total	13/13

College Requirements

Sl.No.	Course Code &	Course Title	Credit /Contact hrs
	No.		
1	011-ENG-6	Intensive English Program - 1	6/12
2	012-ENG-6	Intensive English Program - 2	6/12
3	301-ENG-3	Technical Report Writing	3/3
		Total	15/25

Math & Basic Sciences

Sl. No.	Course Code & No.	Course Title	Credit /Contact hrs
1	107-CHEM-6	General Chemistry	6/7
2	119-MATH-5	Differentiation and Integration - 1	5/5
3	219-MATH-5	Differentiation and Integration - 2	5/5
4	129-PHYS-6	Physics - 1	6/7
5	229-MATH-5	Differentiation and Integration - 3	5/5
6	219-PHYS-6	Physics - 2	6/7
7	319-MATH-5	Differential Equations	5/5
8	329-MATH-4	Linear Algebra	4/4
9	329-STAT-3	Principals of Statistics & Probability	3/3
10	419-MATH-5	Numerical Analysis	5/5
		Total	50/53

Soft Skills

Sl. No.	Course Code & No.	Course Title	Credit /Contact hrs
1	211-GE-3	Learning Skills	3/3
2	221-GE-3	Creativity and Innovation	3/3
3		Elective 1 Soft skills	3/3
4	411-GE-3	Professional Ethics and Practices	3/3
		Total	12/12

^{*}Choose any Elective Soft skills from below mentioned

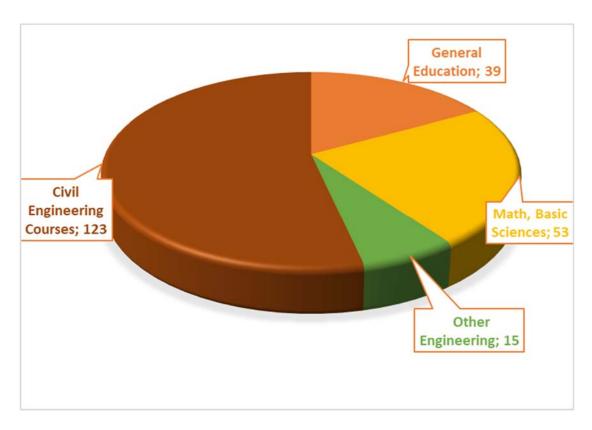
321-GE-3 Knowledge Management

322-GE-3 Design Thinking

323-GE-3 System Dynamics

Total Non- Engineering Courses

Sl. No.	Course Requirement	Credit /Contact hrs
1	University Requirement	13/13
2	College Requirement	15/25
3	Math & Basic Sciences	50/53
4	Soft Skills	12/12
Total 90/10		


Common Engineering Courses

Sl.No.	Course Code & No.	Course Title	Credit /Contact	
1		En ain again a Duarrin a		
1	111-GE-4	Engineering Drawing	4/8	
2	221-ME-4	Production Technology and Workshop	4/7	
3	218-EE-4	Electric Engineering - 1	4/5	
4	311-IE-3	Engineering Economy	3/3	
	Total 15/23			

Civil Engineering Courses

Sl.	Course Code	Course Title	Credit
1	211-CE-5	Statics	5/7
2	223-CE-5	Mechanics of Materials	5/7
3	224-CE-5	Surveying	5/7
4	311-CE-5	Fluid Mechanics	5/7
5	312-CE-5	Construction Materials	5/7
6	314-CE-3	Dynamics	3/3
7	321-CE3	Structural Analysis - 1	5/7
8	322-CE-5	Hydraulics	5/7
9	324-CE-6	Geographic Information Systems (GIS)	6/7
10	400-CE-0	Professional Internship (summer)	0/0
11	412-CE-5	Structural Analysis - 2	5/7
12	413-CE-5	Reinforced Concrete - 1	5/7
13	414-CE-6	Soil Mechanics	6/8
14	421-CE-6	Transportation Engineering	6/7
15	422-CE-5	Civil Engineering Drawing	5/7
16	423-CE-5	Hydrology	5/7
17	424-CE-5	Foundation Engineering - 1	5/7
18	425-CE-5	Design of Steel Structures	5/7
19	581-CE-3	Construction Management	3/3
20	501-CE-5	Reinforced Concrete - 2	5/7
21	598-CE-4	Senior Design Project -1	4/4
22	561-CE-3	Industry and the Environment	3/3
23	582-CE-3	Construction Engineering	3/3
24	591-CE-4	Special topics	4/4
25		Elective - 2	4/5
26		Elective - 3	4/5
27		Elective - 4	4/5
28		Elective - 5	4/5
	•	Total	123/149

Course Credit hours

Total Credit Hrs. 230

Flowchart New Curriculum Trimester Plan

Level/Trimecter Credit Contact Here Here No. Courses	First Year	Second Year	Third Year 7 8 9 14 16 16 18 17 19 4 4 4 4 Islamic Culture 4 1144CP2 2 2 2 Arabic Witting 202-ARAP-2 2 2 3 3 3	Fourth Year 10 11 12 12 16 19 3 3 3 Professional Etrics and Practice 411-012-3 3 3	Fifth Yrea 13 16 16 17 13 14 200 3 4 4 4 7 16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
Meth. Basic Sciences & Other Engineering	Internative Employs	Engineering	Technical Reports Writing 3014ENO-3 3 3 3 3 3 3 3 3 3	Numerical Methods 419-MATH- 5 S S S	Engineering Economy 3114€-3 7 7 8
Civil Englewring Counses		Statics Surveying	Dynamics	Sol Mechanics	Construction Management Sel-Cil-3 3 3

Descriptions of BSc. Civil Engineering Core Courses

Course Title	Statics	Coordinator			
Course Code	211-CE-5	Credit Hrs.	5	Contact Hrs.	7
Prerequisites	129-PHYS-6	Level/Year		5/2	

To impart knowledge about the basic principles of engineering mechanics with emphasis on their analysis and application to practical engineering problems.

Teaching Method:

Lectures, and Training exercises

Expected Learning Outcomes:

CLO-1: To define the fundamentals of forces in plane or in space and equivalent force systems as well as the equations of equilibrium of particles and rigid bodies.

CLO-2: To design and analyze trusses and beams.

CLO-3: To solve friction problems under realistic constraints and interpret results.

CLO-4: To apply integration methods to determine the centroid and moments of Inertia.

CLO-5:To define the professional and ethical responsibility in the design of trusses and beams.

Course Contents:	
	• What is mechanics?
Unit1: Introduction	History of mechanics
to solid mechanics	• Fundamental Concepts
	• Fundamental Principles
	• Systems of Units
	• Resultant of Two Forces, Vectors, Addition of Vectors
	• Resultant of Several Concurrent Forces
Unit II: Statics of	• Rectangular Components of a Force: Unit Vectors
Particles	 Addition of Forces by Summing Components
1 articles	• Equilibrium of a Particle
	• Free-Body Diagrams
	• Rectangular Components in Space
	• External and Internal Forces
	 Principle of Transmissibility: Equivalent Forces
	 Vector Products of Two Vectors
	 Moment of a Force About a Point
Unit III: Rigid	• Rectangular Components of the Moment of a Force
Bodies: Equivalent	 Scalar Product of Two Vectors
Systems of Forces	 Moment of a Couple, Addition of Couples
and equilibrium	• Resolution of a Force Into a Force at O and a Couple
	• System of Forces: Reduction to a Force and a Couple
	 Reactions at Supports and Connections for a 2D Structure
	• Equilibrium of a Rigid Body in Two Dimensions
	• Statically Indeterminate Reactions
	• Equilibrium of a Two-Force Body

	Equilibrium of a Three-Force Body					
	Equilibrium of a Rigid Body in Three Dimensions					
	• Reactions at Supports and Connections for a Three-					
	Dimensional Structure					
	Definition of a Truss: plane truss, Space Trusses					
	Analysis of plane Trusses by the Method of Joints					
	Joints Under Special Loading Conditions					
Unit IV: Analysis	Analysis of Trusses by the Method of Sections					
of simple structures	Trusses Made of Several Simple Trusses					
	Various Types of Beam Loading and Support					
	Shear and Bending Moment in a Beam					
	Relations Among Load, Shear, and Bending Moment					
	Laws of Dry Friction					
	Coefficients of Friction and Angles of Friction					
Unit V: Friction	Problems Involving Dry Friction					
	Wedges, Square-Threaded Screws					
	Moments of Inertia of an Area by Integration					
	Polar Moment of Inertia					
	Radius of Gyration of an Area					
	Parallel Axis Theorem					
Unit VI: Moment of	Moments of Inertia of Composite Areas					
inertia, Centroids	Product of Inertia					
and Centers of	• Moment of Inertia of: a Mass, Thin Plates, a 3D Body by					
gravity	Integration and Common Geometric Shapes					
	Center of Gravity of a 2D Body					
	Centroid of a Line, Centroids and First Moments of Areas					
	Determination of Centroids by Integration					
	Theorems of Pappus-Guldinus					
Text Book (s):						

Text Book (s):

- R.C. Hibbler, Engineering Mechanics: Statics, 12th Edition, Pearson Prentice Hall, 2010
- R.C. Hibbler, Engineering Mechanics; Satatics and Dynamics, 11th Edition, Pearson, 2010

Reference Book (s):

- Meriam and Kraige, Engineering Mechanics: Statics Vol. 1, 7thed, Wiley, 2013.
- Bedford, A, Engineering mechanics. Statics 5th ed. in SI units, 2008

Mode of Evaluation:

- Mid-Term Tests (Not less than two Exams) (40 %)
- Assignments + E-Learning......(10 %)
- Final Exam. (50 %)

Course Title	Mechanics of Materials	Coordinator			
Course Code	223-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	211-CE-5	Level/Year		6/2	

The main objective of the course will be to show how to determine the stress, strain, and deflection suffered by structural elements when subjected to different loads (e.g. normal, shear, torsion, bending and combined loads). Once the state of stresses and strains has been established for a particular structure type, the student will be able to evaluate the allowable loads and associated allowable stresses before mechanical failure. Understanding the adequacy of mechanical and structural elements under different loads is essential for the design and safe evaluation of any kind of structure.

Teaching Method:

Lectures, and Training exercises.

Expected Learning Outcomes:

CLO-1: To define the fundamental concepts of stress and strain and the relationship between both through the strain-stress equations in order to solve problems for simple elastic solids

CLO-2: To solve problems related to torsional deformation of bars

CLO-3: To design beams for bending

CLO-4: To analyze structures experiencing combined loads

CLO-5: To apply Plane stresses Transformation to determine the principle planes and corresponding stresses as well as maximum shear stresses and corresponding planes

CLO-6: To define the concept of buckling and solve problems related to isolated bars.

Course Contents:	
Unit I : Tension, Compression and Shear	 Introduction Stress and strain Tensile test Hooke's law Poisson's ratio Deformations of members under axial loading Ultimate strength of materials Allowable load, allowable stress, factor of safety Shearing stress and strain Bearing stress in connections The shear stress strain diagram Modulus of rigidity Transformation of Plane Stress Principal Stresses Maximum Shearing Stress Mohr's Circle for Plane Stress
Unit II: Geometric Properties of Cross	Centroid of an areaMoment of Inertia of an Area

Section Areas	Polar Moment of Inertia		
	Radius of Gyration of an Area		
	Parallel Axis Theorem		
	Product of Inertia		
	Moments of Inertia for an Area about inclined Axes		
	Principal Moment of Inertia		
	Introduction		
	Shear Force		
	Bending Moment		
	Procedure for Analysis		
	Diagrams		
Unit III: Analysis of	Relations Among Load, Shear, and Bending Moment		
Beams for Bending	Strain Due to Bending		
	Stress Due to Bending		
	Beam Section Properties		
	Shear on the Horizontal Face of a Beam Element		
	Determination of the Shearing Stress in a Beam		
	Torsional Loads on Circular Shafts and Internal Stresses		
	Shaft Deformations		
***	Shearing Strain		
Unit IV: Torsion	Stresses in Elastic Range		
	Normal Stresses		
	Angle of Twist in Elastic Range		
	Axial Force and Bending		
Unit V: Stresses in	Eccentric Axial Loading in a Plane of Symmetry		
Beams Under	Unsymmetrical Bending		
Combined Loadings	Axial force and Unsymmetrical Bending		
	Introduction		
Unit VI: Buckling of	Critical Load		
Columns	Ideal Column with Pin Supports		
	Columns having Various types of supports		
Text Book (s):	5 71 11		
` /	hanics of Materials, Prentice Hall, 9 th Edition, 2014.		
Reference Book (s):			
• Beer, Johnston, D 2006.	Dewolf, Mechanics of Materials, 9 th Edition, McGraw-Hill, USA,		
	echanics of materials, 4th Edition, 2004, Brooks/Cole		
Mode of Evaluation:	, , , =		
	s (Not less than two Exams)(40 %)		
• Assignments + E-Learning(10 %)			
- 7 issignments			

• Final Exam. (50 %)

Course Title	Surveying	Coordinator			
Course Code	224-CE-5	Credit Hrs.	5	Contact Hrs.	7
Prerequisites	119-MATH-5	Level/Year		6/2	

- Have the ability to apply knowledge of mathematics, science, and engineering to understand the measurement techniques and equipment used in land surveying.
- Have the ability to apply knowledge of mathematics, science, and engineering to understand the measurement techniques and equipment used in land surveying.
- Have the ability to apply knowledge of mathematics, science, and engineering to understand the measurement techniques and equipment used in land surveying.
- Ability to function as a member of a team.
- Understand the importance of professional licensure to protect the public in the practice of land surveying.

Teaching Method:

• Lectures, Training exercises (Tutorial + Labs, Reports for different subjects in this field, tanning in different surveying instruments)

Expected Learning Outcome:

CLO-1: To define fundamental principles of Engineering Surveying

CLO-2: To solve levelling problem under realistic constraints and interpret results.

CLO-3: To apply Simpson and trapezoidal rule to determine area

CLO-4: To demonstrate written communication effectively

Course Contents:	
	An Overview of Surveying Engineering
Unit 1:	Capabilities of Surveying
Unit 1:	Hardware and Software requirements of Surveying
	Application of Surveying in Civil engineering
	Classification of Surveying
	Units of measurements
Unit II:	• International system of units (SI)
	Significant Figures
	Rounding off numbers
	Distance measurements
Unit III:	Linear measurements
	Obstacle in linear measurements
	Corrections of linear measurements
	Levelling theory and methods
Unit IV:	Introduction and Definitions
	Equipment for differential levelling
	Levelling field procedures and computations
	Traversing
Unit V:	Methods of measuring traverse angles
Ollit V.	Measurements of traverse lengths
	Traverse field notes

- Traverse with Total Station Instruments
- Traverse Computations

Text Book (s):

- Duggal S K, " Surveying " (vol-1&2) 9th edition, Tata McGraw Hill, 2013
- Paul R. Wolf and Chales D. Ghilani "Elementary Surveying an introduction to Geomatics "12thedition, Pearson Prentice Hall, 2008

Reference Book (s):

• Barry Kavanagh, "Surveying Principles and Application" Pearson, 8th edition, 2009

Mode of Evaluation:

- Mid-Term Tests (Not less than two Exams.) (20 %)
- Assignments + E-Learning......(10 %)
- Final Exam.(50 %)

Course Title	Fluid Mechanics	Coordinator			
Course Code	311-CE-5	Credit Hrs.	5	Contact Hrs.	7
Prerequisites	211-CE-5	Level/Year		8/3	

To impart knowledge about the basic properties of fluids and their behavior, flow conditions, principles of pipe flow and other various civil engineering applications using fluids mechanics principles.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports etc.)

Expected Learning Outcome:

CLO-1:To define fluid mechanics, basic conversation laws: continuity, momentum and energy principles.

CLO-2: To analyze the problems on Hydrostatic Pressure, Fluid dynamics

CLO-3: To illustrate the basic principles of pipe flow

CLO-4:To demonstrate the tools and techniques for fluid mechanics applications

Course Contents:	*
XX 1. 4	• Fluid definition and its various physical properties.
Unit 1: Introduction	Pressure and Pressure head and Measurement of pressure
Introduction	• Pascal's law and its applications in Engineering field
	Total pressure and centre of pressure
Unit II:	• Total pressure on different immersed bodies and their position
Static Fluid	of centre of pressure
	• Applications of total pressure and center of pressure.
	 Flow concepts and conservation of mass principle.
Unit III:	Bernoulli's equation, Momentum principle.
Fluid Dynamics	Energy principle.
	• Engineering Applications
X	Pipe flow: Flow conditions.
Unit IV: Pipe Flow	 Major Head losses (Darcy Weisbach, and Moody diagram).
Tipe Tiow	Pipe connections: Series and parallel
Unit V:	Dimensional analysis and similitude.
Dimensional Analysis	 Types of similitude and analysis.

Text Book (s):

• Munson & Okiishi,"Fundamentals of Fluid Mechanics", John Wiley, 6th ed, 2010.

Reference Book (s):

- White, Frank M. Fluid Mechanics, McGraw Hill, 7th Edition 2011
- Roberson, J.A. and Crowe, C.T.," Engineering Fluid Mechanics", John Wiley, 7th Edition, 2001.

Mode of Evaluation:(30 %)• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work(10 %)• Assignments + E-Learning(10 %)• Final Exam(50 %)

Course Title	Construction Materials	Coordinator			
Course Code	312-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	223-CE-5	Level/Year		7/3	

- To impart knowledge about the physical and mechanical properties of building materials especially the properties of steel, aggregate and wood
- To impart knowledge about the cement and concrete manufacturing and properties and tests of cement and concrete
- To prepare the student to conduct the tests on building materials, cement, Aggregate and green/hardened concrete

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports for different topics in this field)

Expected Learning Outcome:

CLO-1To define the physical and mechanical properties of building material and its broader applications in civil engineering

CLO-2: To Solve problems based on mechanical properties of material under Realistic constraints and interpret results.

CLO-3: To apply statistical method to determine fineness modulus of aggregate.

CLO-4: To demonstrate good written communication effectively.

Course Contents:	
	Physical Properties of Building Materials
	Mechanical Properties of Building Materials
II. 4 I. D	• Tests Measuring Devices for Tension, Compression, Flexure,
Unit I: Properties of Materials	Hardness and Impact Machines
Waterials	• Tensile testing of Material (Steel or Aluminum Alloy)
	• Measurement of different Steel Properties from Tension Test
	(Elasticity, Plasticity and Yield etc.)
	• Properties of Aggregates
Unit II : Aggregates	• Classification of Aggregates
Omit II. Aggregates	• Apparatus and Testing for Aggregates (Grain Size, Fineness,
	Specific Gravity, Unit Weight, Absorption, Abrasion, Impact)
	• Properties of Wood
	• Classification of wood
Unit III: Wood	• Defects of wood
	• Seasoning and Preservation of wood
	• Apparatus and Testing for wood
Unit IV: Cement	Manufacturing of cement

	•	Ingredients of cement			
	•	Properties of cement			
	•	Classification of cement			
	• Apparatus and Testing for cement (Fineness, Surface Normal Consistency, Initial and Final Setting				
		Compression, Flexural, and Tensile Tests)			
	•	Quality control of cement in Field			
	•	Manufacturing of concrete			
	•	Ingredients of concrete			
	•	Properties of concrete			
Unit V : Concrete	•	Classification of concrete			
Unit V. Concrete	•	Apparatus and Testing for concrete (Slump, Flow,			
		Compression test for cubes and cylinders, Concrete Test			
		Hammer, and Pundit Plus)			
	•	Quality control of concrete in Field			

Text Book (s):

- Kosmatka, S.H. and Panarese, W.C., "Design and Control of Concrete Mixture", Portland cement Association, Skokie, Illinois, 14th Edition (2002).
- Mindess, S. and Young, J.F.," Concrete", Prentice-Hall, Inc. New Jersey, 2nd Edition, 2002.

Reference Book (s):

- Derucher, K.N., Korfiatis, G.P.Korfiatis., and A.S., Ezeldin, "Materials for Civil and Highway Engineers", Prentice Hall Englewood Cliff, N.J., 4th Edition, 1998,
- Michael S. Mamlouk, John P. Zaniewski, Materials For Civil And Construction Engineers, Prentice-Hall, Inc. New Jersey, Third Edition, 2011.
- M.S. Shetty: Concrete Technology: Theory and Practice, S. Chand & company Ltd., Rev. edition., 2005

Mode of Evaluation:

• Mid-Term Tests (Not less than two Exams.)	(% 00
• Practical Work(1	0 %)
• Assignments + E-Learning(1	0 %)
• Final Exam. (5	50 %)

Course Title	Dynamics	Coordinator	
Course Code	314-CE-3	Credit Hrs. 3	Contact Hrs. 3
Prerequisites	211-CE-5	Level/Year	7/3

To know the principles of particle and rigid body kinematics and kinetics and application to practical engineering problems.

Teaching Method:

Lectures, and Training exercises

Expected Learning Outcomes:

CLO-1: To define the basic kinematics concepts – displacement, velocity and acceleration for rectilinear and curvilinear motions (in-plane and in-space).

CLO-2: To apply newton's laws of motion and write equations of motion for particles and rigid bodies.

CLO-3: To formulate and solve the basic dynamics concepts – force, momentum, work, potential and kinetic energy.

CLO-4: To use Principle of Work & Energy and principle of Impulse-momentum to solve problems under realistic constraints and interpret results.

Course Contents:	•
	Rectilinear Motion
	Plane Curvilinear Motion
Unit I : Kinematics of	Rectangular Coordinates
Particles	Normal and Tangential Coordinates
1 articles	 Polar Coordinates
	• Space Curvilinear Motion
	Relative Motion
	 Newton's Second Law
Unit II: Kinetics of	• Equation of Motion and Dynamic equilibrium
Particles: Newton's	 Rectilinear Motion and Curvilinear Motion
second law	• Linear Momentum of a Particle
Second law	Angular Momentum of a Particle
	Conservation of momentum
	• Work of a Force
	 Principle of Work & Energy
Unit III: Kinetics of	Power and Efficiency
Particles: Energy and	Potential Energy
Momentum Methods	• Conservative Forces
	Conservation of Energy
	 Motion Under a Conservative Central Force
	Principle of Impulse and Momentum
	Impulsive Motion
	Impact: Direct Central Impact, Oblique Central Impact
Unit VI: Kinematics	• Translation

of Rigid Bodies	 Rotation About a Fixed Axis Equations Defining the Rotation of a Rigid Body About a Fixed Axis General Plane Motion Absolute and Relative Velocity in Plane Motion Instantaneous Center of Rotation in Plane Motion Absolute and Relative Acceleration in Plane Motion Analysis of Plane Motion in Terms of a Parameter Rate of Change With Respect to a Rotating Frame Motion About a Fixed Point General Motion: Three Dimensional Motion. Coriolis Acceleration
Unit V: Plane Motion of Rigid Bodies: Forces and Accelerations	 Frame of Reference in General Motion Equations of Motion of a Rigid Body Angular Momentum of a Rigid Body in Plane Motion Plane Motion of a Rigid Body: d'Alembert's Principle Axioms of the Mechanics of Rigid Bodies Problems Involving the Motion of a Rigid Body Constrained Plane Motion: Noncentroidal Rotation and Rolling Motion

Text Book (s):

- R.C. Hibbler, Engineering Mechanics; Satatics and Dynamics, 11th Edition, Pearson, 2010
- R.C. Hibbler, Engineering mechanics: Dynamics, 5thEdition, Pearson Prentice Hall, 2003.

Reference Book (s):

• J. Meriam & L.G. Kraige, "Engineering Mechanics: Dynamics" John Wiley and sons inc, 5th edition,, 2003.

Mode of Evaluation:

- Mid-Term Tests (Not less than two Exams) (40 %)
- Assignments + E-Learning......(10 %)
- Final Exam. (50 %)

Course Title	Structural Analysis-1	Coordinator	
Course Code	321-CE-5	Credit Hrs. 5	Contact Hrs. 6
Prerequisites	223-CE-5	Level/Year	8/3

To impart knowledge about the basic principles of structural analysis for understand the fundamentals and the basic methods that used in the structural analysis, influence lines and deflections of structures. Enable the students to use the computer applications to analyze the beam structure.

Teaching Method:

Lectures, Training exercises (Tutorial and Reports for different subjects in this field)

Expected Learning Outcome:

CLO-1: To define the fundamentals of structural analysis for solving determinate structures such as beam, frame, truss and arch structures.

CLO-2: To apply integration and differentiation methods to determinate the internal forces in beam, frame, truss and arch structures.

CLO-3: To analyze the determinate beam under moving loads to find the internal forces and draw the influence lines for all kinds of internal forces.

CLO-4: To solve actual problems for existing structures to calculate the deflection of different kinds of structures due to the applied loads.

CLO-5:To demonstrate the professional and ethical responsibility in the analysis and design of determinate structures.

design of determinate structures.				
Course Contents:				
Unit 1:	• Introduction to structural analysis.			
Introduction to Structural	• Types of structures and supporting system.			
Analysis	• Reaction forces.			
Unit II:	• Internal forces of statically determinate beams.			
Internal forces for different	• Internal forces of statically determinate frames.			
types of determinate	• Internal forces of statically determinate trusses.			
structures	• Internal forces of statically determinate arches.			
Unit III:	• Stability of structures.			
Structures classification	• Determinate or indeterminate classification of structures.			
Unit IV:	• Introduction to influence lines.			
Influence lines of	• Influence lines of determinate beams.			
determinate structures				
Unit V:	• Introduction to deflections.			
Deflections of structures	• Deflection of beams using virtual work method.			
Unit VI:	• Computer applications for structural analysis of beams			
Computer applications				

Text Book (s):

• R.C. Hibbler, "Structural Analysis", Prentice-Hall, 7th Edition. 2009

Reference Book (s):

• Hassoun, M. Nadim, Structural concrete: theory and design, 4th Edition, 2008

 Jack C. McCormac, "Structural Analysis: Using Classical and Matrix Methods", Wiley; 4th Edition, 2007
 Mode of Evaluation:

out of Evaluation.		
• Mid-Term Tests and E-Learning tests (Not le	ess than two Exams)	(40 %)
 Practical Work and Assignments 		(10 %)
• Final Exam.		(50 %)

Course Title	Hydraulics	Coordinator			
Course Code	322-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	311-CE-5	Level/Year		9/3	

To impart knowledge about the basic principles of fluids and of fluid flow, pipe flow and open channel flow, measurements in pipes and open channels.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports etc.)

Expected Learning Outcome:

CLO-1: Ability to acquaint with the basic principles of Hydraulics.

CLO-2: Ability to identify, formulate, and solve Hydraulics problems

CLO-3: Ability to understand the basic principles of Hydraulics.

CLO-4: Ability to acquire the skills to use some of the software used in the calculations of Hydraulics System Design.

CLO-5: To define the professional and ethical responsibility in the design of Hydraulics System.

Course Contents:	
Unit 1: Review: Pressurized Flow	 Pressurized pipe flow –. Energy, Laws Open channel flow, difference between pipe flow and open channel flow Friction losses and minor losses. Series, parallel, and branching flow.
Unit II : Pumps and Pumps Selection	Pumps and pump selection.Water Distribution Systems.
Unit III: Open Channel Flow	 Open channel flow – Steady and uniform flow. Laminar and turbulent flow Open channel flow: Design and analysis
Unit IV: Hydraulic Structures	 Specific energy; Hydraulic Jump. Water surface profiles, Measurements Dams, Reservoirs and head works
Unit V: Dimensional analysis and Similitude	Dimensional analysis and similitude.Types of similitude and analysis.

Text Book (s):

• Featherstone, R. E.," Civil Engineering Hydraulics", Blackwell Science, 2009.

Reference Book (s): • Sturm, Terry W, Open channel hydraulics, McGraw-Hill, 2nd Edition, 2010 Mode of Evaluation: • Mid-Term Tests (Not less than two Exams.) (30 %) • Practical Work (10 %) • Assignments + E-Learning. (10 %) • Final Exam. (50 %)

Course Title	Geographic Information System (GIS)	Coordinator			
Course Code	324-CE-6	Credit Hrs.	6	Contact Hrs.	7
Prerequisites	None	Level/Year		9/3	

To impart knowledge about the basic principles of Geoinformation techniques for mapping, analysis and various other civil engineering applications using GIS technology.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports for different subjects in this field)

Expected Learning Outcome:

- CLO-1: Explain characteristics, types and processing of geospatial data.
- CLO-2: Describe how GIS is used as a tool in their discipline
- CLO-3: Analyze vector and raster data using ArcMap
- CLO-4: Produce maps at a professional standard
- CLO-5: Critically analyze limitations of GIS applications in terms of accuracy and scale.
- CLO-6: Use GIS to identify, explore, understand, and solve spatial problems
- CLO-7: An ability to use the techniques, skills and geoinformation tools necessary for engineering practices.
- CLO-8: Design and complete a GIS project from start to finish (data capture, data storage and management, analysis, and presentation);
- CLO-9: Conduct simple spatial analysis using GIS software;
- CLO-10: Demonstrate GIS modeling skills
- CLO-11: Demonstrate critical thinking skills in solving geospatial problems.
- CLO-12: Demonstrate competency with the ArcMap software to enhance and interpret data e.g. Use queries in GIS Analysis Formulate applications of GIS technology.

Course Contents:	7 11 37
	Geographical Information System (GIS): An Overview
	Capabilities of GIS
Unit 1:	Hardware and Software requirements of GIS
Introduction to GIS	Application of GIS in Civil engineering
	Classification of map layers
	Spatial data models (Vector based-raster based)
	Map formats, Metadata
	Map Navigation System (GPS)
Unit II:	Map projection in GIS
Getting Information	Geographic coordinate system (GCS) Vs projection system
from a GIS	Map scale and resolution GIS queries, ArcGIS for Map
	queries
	GIS data products
	Map design
Unit III:	Graphical Hierarchy
Designing Maps	Point line and polygon symbols
	Map Layouts

	Numeric intervals
	ArcGIS for Map Design
	Digitizing, Editing and Structuring Map Data
	Creation of personnel Geodatabase
Unit IV:	Data management (feature conversion, append etc.)
Building a GIS	Recourses on the Internet: US. Census Bureau Data/ESRI
database	Website
	Satellite image free download
	Open source GIS
	Mapping data with identifiers
Unit V:	Geocoding, Updating and modification
GIS Analysis	Join and relate the spatial data
Olo Allalysis	Spatial Analysis
	Work in Mini GIS Project

Text Book (s):

• Concepts and Techniques of Geographical Information System by Lo, C. P. and Young, A. K. W., Prentice Hall, 2007.

Reference Book (s):

- Clarke, Keith C. ,l Getting started with geographic information systems 5th ed. Pearson Education, 2011
- Longley, Paul, Geographic information systems & science, Wiley, 3rd Edition, 2011
- Ormsby Tim, Getting to Know Arc GIS desktop, ESRI, 2010.

Mode of Evaluation:

- Mid-Term Tests (Not less than two Exams.) (20 %)
- Assignments + E-Learning......(10 %)

Course Title	Structural Analysis-2	Coordinator	
Course Code	412-CE-5	Credit Hrs. 5	Contact Hrs. 6
Prerequisites	321-CE-5	Level/Year	10/4

To introduce the students to the indeterminate structural analysis, studying the internal forces and the deformations of the structures. Understand the fundamentals and the basic methods that used to solve the indeterminate structures, force methods and displacement methods such as, consistent deformation method, three moments equation, slope deflection method, moment distribution method, stiffness matrix method and approximate analysis of multi-story structures. Expose students to use the computer applications to analyze the indeterminate structure.

Teaching Method:

Lectures, Training exercises (Tutorial and Reports for different subjects in this field)

Expected Learning Outcome:

CLO-1: To define the basics of structural analysis and different concept for solving indeterminate structures.

CLO-2: To apply the different methods and theory, the consistence deformation method, the three moment equation method, the slope deflection method, the moment distribution method and the stiffness matrix method for solving all kinds of indeterminate structures.

CLO-3: To calculate the internal forces in indeterminate structures needed to solve engineering problems

CLO-4: To illustrate the bending moments, shear forces, normal forces and influence lines diagrams of indeterminate structures.

CLO-5: To use the modern tools necessary for structural analysis.

220 3. To use the modern tools necessary for structural analysis.			
Course Contents:			
Unit 1:	Introduction to the indeterminate structures.		
Introduction to	Concept of solving indeterminate structures		
Indeterminate Structural	Degree of static and kinematic indeterminate structures.		
Analysis			
Unit II:	Consistent deformation method.		
Force control methods	Method of equation of three moments.		
Unit III:	Slope deflection method		
Displacement control	Moment distribution method.		
methods	Stiffness matrix method.		
Unit IV:	Introduction to influence lines.		
Influence lines of	Influence lines of indeterminate structures.		
indeterminate structures			
Unit V:	Portal frame method.		
Approximate methods for	Cantilever method.		
solving indeterminate			
structures			
Unit VI:	• Introduction to structural analysis software program.		
Computer applications	• Computer applications for structural analysis of		

	indeterminate structures		
Text Book (s):			
• R.C. Hibbler, "Structural Analysis", Prentice-Hall, 7 th Edition. 2009			
Reference Book (s):			
Hassoun, M. Nadim, Street	• Hassoun, M. Nadim, Structural concrete: theory and design, 4th Edition, 2008		
• Jack C. McCormac, "Structural Analysis: Using Classical and Matrix Methods", Wiley; 4th Edition, 2007			
Mode of Evaluation:			
 Mid-Term Tests and E 	-Learning tests (Not less than two Exams)(40 %)		
• Practical Work and Assignments(10 %)			
• Final Exam	(50 %)		

Course Title	Reinforced Concrete-1	Coordinator			
Course Code	413-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	321-CE-5	Level/Year		11/4	

To impart knowledge about the basic principles of design of reinforced concrete structures

Teaching Method:

Lectures, Training exercises (Tutorial, Quizzes and Assignment questions)

Expected Learning Outcome:

CLO-1: To compute design loads according to code constraints of safety, serviceability and economy.

CLO-2: To analyze beams, solid slabs and columns.

CLO-3: To design beams, solid slabs and columns according to code provisions.

CLO-4: To evaluate the strength of reinforced concrete elements.

CLO-5: To demonstrate the importance of the building codes and ethical responsibility in the design process.

the design process.	
Course Contents:	
Unit 1:	Mechanical properties of concrete
Introduction to	Mechanical properties of Reinforced steel
properties of concrete and reinforcing steel	Compatibility between concrete and steel
Unit II:	Dead loads
Types of loads and	Live loads
their factors	Lateral loads
then factors	• ACI- 318
	Design of singly reinforced sections
Unit III:	Design of doubly reinforced sections
Ultimate strength	• screens
design method (USD)	Design of rectangular sections
	Design of T and L-shapes sections
	Design of beams against flexure
Unit IV:	Design of beams against shear
Design of structural	Design of one -way slab
elements	Design of short columns
	Calculations of development length of steel

Text Book (s):

 Mashhour Ghoneim, Mohmoud EL-Mihlmy, "Design of Reinforced Concrete Structures", 1st Edition, 2014

Reference Book (s):

- "ACI committee 318 Building Code Requirements for Reinforced concrete" ACI 318-05), 2005.
- Arthur H. Nilson" Design of Concrete Structures" 13th Edition, McGraw Hill, 2002

Mode of Evaluation:• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work and Assignments(10 %)• Quizzes and E-learning(10 %)• Final Exam.(50 %)

Course Title	Soil Mechanics	Coordinator			
Course Code	414-CE-6	Credit Hrs.	6	Contact Hrs.	8
Prerequisites	223-CE-5	Level/Year		10/4	

- Understanding mechanics properties of soil
- Knowing hydraulics properties of soil.
- Getting skills in using principles of geotechnical engineering in engineering applications.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports for different subjects in this field)

Expected Learning Outcome:

- CLO-1: To define the fundamentals of soil mechanics such as phase diagram, index properties, standard methods to classify soils permeability, capillarity, permeability, total and effective stresses.
- CLO-2: To design and analyze evolution of stresses, pore water pressure, permeability in profiles.
- CLO-3: To solve shear strength problems for different types of soil. Differentiate applications upon the nature of external actions
- CLO-4: To apply algebra, elementary calculus, and principles of elasticity theory in simple geotechnical systems.

CLO-5: To illustrate contemporary issues of earthworks.

Course Contents:	
Unit 1:	Soil Mechanics: An Overview
Introduction to Soil	Overview of Principle properties of soil
Mechanics	1 1 1
Unit II:	• Seepage in Soil
Seepage	• FLownets
Unit III:	• Stress below Soil
Stresses in Soil	Newmark chart, Influence coefficient
	• Different method for Determining shear strength Parameters
Unit IV:	• Direct shear test
Shear strength of Soil	• Triaxial Test
Shear strength of Son	• Vane shear test
	• mohr Circle
Unit V:	• Study of settlement of Soil with time
Consolidation and	
settlement	
Unit VI:	• Active and Passive Pressure
Earth Pressure	• Study of soil at rest
Unit VII:	• Rankine theory
Stability of slope	

Text Book (s):

• Das, B., "Principles of Geotechnical Engineering", 8th edition, Brooks/Cole, 2014.

• Radwan, Amr, Fundamentals of Soil mechanics, 9th Edition, 2009, Dar Elmaarefa

Reference Book (s):

- Das, B, "Soil Mechanics Laboratory Manual", Engineering Press, Oxford University Press, USA; 7th Edition, 2009.
- Holtz, R. D., and Kovaes, W. D and Sheahan.," An Introduction to Geotechnical Engineering", pearson-Hall, USA. 2nd Edition, 2011
- Terzaghi, Karl, Soil mechanics in engineering practice, Wiley, 3rd Edition, 1996

- Practical Work(10 %)
- Assignments + E-Learning......(10 %)

Course Title	Transportation Engineering	Coordinator			
Course Code	421-CE-6	Credit Hrs.	6	Contact Hrs.	7
Prerequisites	224-CE-5	Level/Year		12/4	

- The course focuses on highway transportation rather than other several transportation mode
- The review and application of selected engineering, planning, economic and mathematical concepts and principles to address highway transportation problems.
- To promote a protocol that considers preservation before expansion.
- Consider amending STP-Urban project selection criteria that rewards preservation activity.

Teaching Method:

• Lectures, Training exercises (Tutorial + Labs, Reports for different subjects in this field)

Expected Learning Outcome:

- CLO-1: Ability to acquaint with the basic principles of Transportation Engineering.
- CLO-2: Ability to identify, formulate, and solve Transportation Engineering problems
- CLO-3: Ability to understand the basic principles of Transportation Engineering.
- CLO-4: Ability to acquire the skills to use some of the software used in the calculations of Transportation Engineering.
- CLO-5: To define the professional and ethical responsibility in the design of Transportation Engineering System.

Course Contents:	
	An Overview of Transportation
Unit 1: Introduction	• Introduction to Transportation
Onit 1. introduction	Development of Transportation Systems
	 Roads as a Means of Communication
	History of Road Construction
	Road Planning
Unit II : Highway	Classification of Roads
capacity	 Highway capacity and level of service
	• Cross sectional elements
	• Transportation planning process
	• Introduction
Unit III: Geometric	Geometric Design of Highways
	• Width of Formation
	• Right of Way
Unit IV: Highway	• Width of Pavement

components	• Camber
	Gradient
	• Speed
	SpeedSight Distance

Text Book (s):

- Banks, Tam, 'Introduction to Transportation Engineering, 2nd Edition, 2002.
- Paul H. Wright and Norman J. Ashford "Transportation Engineering", John Wiley and Sons Publishing Co, 4th edition, 1998

Reference Book (s):

- Kavanagh, Barry F , Surveying : principles and applications, Pearson/Prentice Hall, 8th Edition, 2009
- Kutz, Myer, "Handbook of transportation Engineering", McGraw Hill, 2004

- Practical Work(15 %)
- Assignments + E-Learning......(10 %)
- Final Exam.(50 %)

Course Title	Civil Engineering Drawing	Coordinator			
Course Code	422-CE-4	Credit Hrs.	4	Contact Hrs.	6
Prerequisites	111-GE-4	Level/Year		11/4	

The objective of this course is to teach civil engineering students the basic skills of civil engineering drawing and drafting by using a computer-aided design and drawing software. Autodesk product AutoCAD will be used throughout the course. The AutoCAD software is one of the most widely used design and drafting tools in the world. Students will be able to gain proficiency in AutoCAD software by creating/modifying plans, drawings, or design files used for a variety of civil and environmental engineering projects. Course topics may also include works of real field examples.

Teaching Method:

• Lectures, Training exercises, E Learning, Power point Presentation, (Tutorial + Labs, Reports for different subjects in this field)

Expected Learning Outcome:

At the end of the course the student should be able to:

- **CLO 1:** To define the basics of drawing, design and the fundamental concepts of AutoCAD as it relates to civil and construction engineering.
- **CLO 2:** To develop the skills to design components in form of drawings as per realistic constraint.
- **CLO 3:** To utilize techniques and skills for the reading of civil/construction plans, comprehending scale, engineering graphic standards.
- CLO 4: To create drawings of real-life examples to develop lifelong learning skills.
- **CLO 5:** To communicate effectively by creating/modifying plans, drawings or design files civil engineering practices
- **CLO 6:**To work in teams to accomplish a variety of tasks.

Course Contents:	*
	Software User Interface
Unit 1: Introduction	 Coordinates, Units and Limits
	 Scale, Board and Title and Plotting
	Layer and Line setting
	 Hatching, Dimensioning, Blocks
II.'4 II. D'1. A'.1	Plan View
Unit II: Residential	• Elevation View
Building Drawings	 Cross Sectional View
	• Plan and cross sectional view of Doors, Windows, Staircase
	Structural plan
Unit III: Structural	• Reinforcement details of structural elements (beams,
Drawings	columns, slab, etc)
	 Foundation plan and details
Unit IV:	• Introduction to 3D modelling of Civil Engineering
3D modelling	Projects/design
Text Book (s):	

- Leach. AutoCAD 2008 Companion: Essentials of AutoCAD Plus Solid Modeling. (McGraw Hill, 2008). ISBN 978-0-07-340246-8
- Ellis, Rick. A Practical Guide to AutoCAD Civil 3D, Cadapult Press, 2017.

Reference Book (s):

- Harnessing Autodesk Civil 3D 2007 by Phillip Zimmerman. Thomson Delmar Learning
- Students are also encouraged to check the Autodesk AutoCAD website (http://knowledge.autodesk.com/support/autocad/) for more learning information.

•	Mid-Term Tests (Not less than two Exams.)	
•	Practical Work(10 %)	
•	Assignments + E-Learning(10 %)	
•	Final Exam(50 %)	,

Course Title	Hydrology	Coordinator			
Course Code	423-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	311-CE-5	Level/Year		11/4	

- To know the basics of hydrology with a focus on engineering aspects.
- To acquire the skills to use different methods in the management of water sources.
- To Understanding the hydrological cycle.
- To acquire the skills of Hydrology using GIS software.

Teaching Method: Lectures; Training exercises (Tutorial + Labs); Experimental Lab.

Expected Learning Outcome:

- CLO-1: Understand and describe the global distribution of water on the earth's surface and how it moves through the hydrologic cycle
- CLO-2: Describe the basic principles of hydrology and methods of managing water resources
- CLO-3: Understand and apply probabilistic methods for quantitative analysis of rainfall variability and frequency analysis
- CLO-4: Analyze and interpret stream hydrographs and hydrograph components, and implement techniques for calculating runoff from a catchment
- CLO-5: Estimate the water resources availability and reduction of hydrological risks
- CLO-6: An ability to use the techniques, skills and tools necessary for engineering practices
- CLO-7: An ability to identify, formulates, and solves hydrological problems.
- CLO-8: Demonstrate Hydrological modeling skills
- CLO-9: Demonstrate critical thinking skills in solving hydrological problems.
- CLO-10: Produce a written technical report based on proficient application of techniques for quantitative hydrologic analysis.
- CLO-11: Undertake a detailed literature review to locate, identify and critically assess knowledge development in the discipline of hydrology

Course Contents:	
Unit 1: Principles and objectives of hydrology and water resources engineering	 Principles of hydrology and water resources engineering Objectives of water resources development
Unit II: Hydrological cycle and hydrological processes	 Water demand Hydrological cycle Hydrological water budget Measurement and analysis of precipitation

	Measurement and analysis of Evaporation		
	Measurement and analysis of Infiltration		
Unit III: Groundwater	Ground water: water resources and geological agents		
	Conjunctive use of surface and ground waters		
Unit IV:	Applications of GIS in Water Resources Engineering		
GIS Hydrology	• GIS Analysis Functions and Operations using		
	ArcHydro tool		
Unit V: Water resources	Planning for water resources development		
Offit V. Water resources	Economic analysis of water resources projects		

Text Book (s):

• K Subramanya, "Engineering Hydrology", The McGraw-Hill, 4thEdition, 2013.

Reference Book (s):

- Raghunath, H. M., Hydrology: principles, analysis, and design, New Age International, 2nd edition, 2006
- Leonard F. Debano, Greqarson, H. M., and Peter F. Folliott," Hydrology and the management of the Watershed", Iowa State Press; 3rd Edition, 2003.

Mode of Evaluation:

•	Mid-Term Tests (Not less than two Exams.)	(30 %)
•	Practical Work and Assignments	(20 %)

• Final Exam. (50 %)

Course Title	Foundations Engineering-1	Coordinator			
Course Code	424-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	413-CE-5&414-CE-6	Level/Year		12/4	

• This course spots on the bearing capacity of soil and different types of foundations and the principles of analysis and design of foundations, foundation settlements, deep foundations, earth pressure and retaining walls.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports etc.)

Expected Learning Outcome:

CLO-1: To recognize the basic principles of foundations engineering for civil engineer.

CLO-2: To design different shallow foundations like isolated footing, strip footing, combined footing, strap footing and the raft foundations under realistic constraints

CLO-3: To develop foundation models using the techniques, skills and modern engineering tools.

CLO-4: To solve spatial problems concerning engineering foundations

CLO-5: To demonstrate contemporary issues of foundations

Course Contents:		
Unit 1:	Type of foundations	
Introduction		
	 Bearing capacity of soil 	
Unit II:	Egyptian code method	
Bearing capacity of soil	Terzaghi Method	
SOII	Field method	
	Design of isolating footing.	
T TT	 Design of combined footing. 	
Unit III: Shallow foundation	 Design of strip footing. 	
Shanow foundation	 Design of strap footing. 	
	 Design of raft foundations. 	
Unit IV: Retaining structure	Deep foundations.	
	• Earth pressure.	
	 Design of retaining wall. 	

Text Book (s):

• Das, B.M., "Principles of Foundation Engineering", Thomson-Brooks/Cole 6th Edition, 2007.

Reference Book (s):

• Bowles, J. E.," Foundation Analysis and Design", McGraw-Hill Bool Co., U.S.A, 5th Edition, 1996.

Mode of Evaluation:(30 %)• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work(10 %)• Assignments + E-Learning(10 %)• Final Exam(50 %)

Course Title	Design of Steel Structures	Coordinator			
Course Code	425-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	412-CE-5	Level/Year		12/4	

The purpose of the course is to introduce the students to the introduction to the properties of the steel materials and design the steel structures as well, design of the tension and compression members and get the skills for analysis and design of the steel structures. Enable the students to use the computer applications and software programs to design and produce detailed drawings for steel structures.

Teaching Method:

Lectures, Training exercises and project work (Tutorial and Reports for different subjects in this field)

Expected Learning Outcome:

- CLO-1 define and calculate the design loads on a typical steel building.
- CLO-2 Recognize and define the different failure modes of steel tension and compression members and beams, and compute their design strengths.
- CLO-3 Choose the most suitable section shape and size for tension and compression members and beams, columns and Beam-columns
- CLO-4 Analyze and Design bolted and welded connections for tension and comp. members and beams.

Course Contents:	
Unit 1:	• Introduction to design of steel structures.
Introduction to design of	Design loads
steel structures	
Unit II:	Design of tension members.
Design of steel members	Design of compression members.
subjected to axial load	
Unit III:	Design of beam sections.
Design of steel sections	Design of beam-column sections.
Design of steel sections	Design of columns subjected eccentric loads.
Unit IV:	Design of bolted connections.
	Design of welded connections.
Steel connections	Design of base plate connection
Unit VI:	• Introduction to steel design software program.
Computer applications	• Computer applications for design of steel structures.
	 Design of base plate connection Introduction to steel design software program.

Text Book (s):

- Jack c. McCormac, "Structural Steel Design", Prentice Hall; 5th Edition, 2012.
- William T. Segui, "Steel Design", Thomson, 4th edition, 2007.

Reference Book (s):

- Charles G. Soliman and John E. Johron, "Steel Structures Design and Behavior", Prentice Hall, 5th Edition, 2009.
- B.C. Punmia and A.K. Jain, 'Design of steel structures, 1998, LP, Reprint 2013

Mode of Evaluation:• Mid-Term Tests and E-Learning tests (Not less than two Exams)..... (30 %)• Practical Work and Assignments..... (10 %)• Project work..... (10 %)• Final Exam...... (50 %)

Course Title	Construction Management	Coordinator			
Course Code	581-CE-3	Credit Hrs.	3	Contact Hrs.	3
Prerequisites		Level/Year		14/5	

To impart knowledge about the fundamentals and rules to plan and manage the engineering projects, know and understand the planning and organizing techniques. Know and apply of line of balance, bar-chart and network techniques. The student should get kills for material and labor resources and organization.

Teaching Method:

Lectures, Training exercises (Tutorial, Quizzes and Assignment questions)

Expected Learning Outcome:

- CLO 1: To define the fundamentals of Construction management including the description of project life cycle.
- CLO 2: To describe the bid package with their implication in handling the project.
- CLO 3: To justify the construction contracts according to their measurements an payments
- CLO 4: To evaluate the changes and extra work for the requirements of the projects and enable the process of termination to the students
- CLO 5: To calculate the different types of estimation process as per the design aspects of the project.
- CLO 6: To summarize the project scheduling based on various contracts and need of the project.
- CLO 7: To illustrate project scheduling according to the work break down structure so that it could be implemented in the project properly
- CLO 8: To analyze the critical path method as per the flow or various construction stages for any ongoing project.

for any ongoing project	<u> </u>
Course Contents:	
Unit 1: Introduction to Project Management	 Introduction to project management The manager responsibilities and duties Engineering project management
Unit II : Network Planning	 Network planning. Bar charts planning. Using of network and bar chart planning in project management.
Unit III: Project Management Control	 Project management control. Material recourses and cost control. Equipment recourses and cost analysis and control. Equipment and production cost estimation and productivity control.

Text Book (s):

• Robert Peurifoy and Clifford J. Schexnayder and Aviad Shapira and Robert Schmitt, "Construction planning, equipment & Methods", McGraw Hill, 8th Edition, 2010

Reference Book (s):

- S.W. Nunnaly," Construction Methods and Management", Prentice-Hall, Inc., 7th Edition, 2006.
- Richard Clough, "Construction Contracting: A Practical Guide to Company Management", Wiley; 7th Edition, 2005.

- Practical Work and Assignments(20 %)
- Quizzes and E-learning(10 %)

Course Title	Reinforced Concrete 2	Coordinator			
Course Code	501-CE-5	Credit Hrs.	5	Contact Hrs.	6
Prerequisites	413-CE-5	Level/Year		13/5	
Elective Track		Structural Engineering			

To impart knowledge about the design of reinforced concrete structures

Teaching Method:

Lectures, Training exercises (Tutorial, Quizzes and Assignment questions)

Expected Learning Outcome:

CLO-1: To compute design loads according to code constraints of safety, serviceability and economy.

CLO-2: To analyze different types of slabs and frame under loads

CLO-3: To design different types of slabs and frame according to code provisions.

CLO-4: To evaluate the strength of reinforced concrete elements.

CLO-5:To demonstrate the importance of the building codes and ethical responsibility in the design process.

Caura Cantanta			
Course Contents:			
Unit 1:	Mechanical properties of concrete		
Introduction to	• Mechanical properties of Reinforced steel		
properties of concrete • Compatibility between concrete and steel			
and reinforcing steel			
Unit II:	Design of hollow blocks slabs		
Types of sabs	• Design of flat slabs		
Types of saos	• Design of paneled beams slabs		
Unit III:	• Design of continuous beams against flexure		
continuous beams	• Design of continuous beams against shear		
	• Details of reinforcement		
	 Types of frames 		
	 Loads acting on frames 		
Unit IV:	 Design of long columns 		
Design of Frames	 Design of sections with eccentricity 		
Design of Frames	 Details of reinforcement 		
	• Using computer software in design of reinforced concrete		
	structures		

Text Book (s):

• Mashhour Ghoneim, Mohmoud El-Mihlmy, "Design of Reinforced Concrete Structures", 1st Edition, 2014 (Vol. 2 and 3)

Reference Book (s):

- "ACI committee 318 Building Code Requirements for Reinforced concrete" ACI 318-05), 2005
- Arthur H. Nilson" Design of Concrete Structures" 13th Edition, McGraw Hill ,2002

Mode of Evaluation:(30 %)• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work and Assignments(10 %)• Quizzes and E-learning(10 %)• Final Exam.(50 %)

Course Title	Senior Design Project-1	Coordinator	
Course Code	598-CE-4	Credit Hrs. 4	Contact Hrs. 4
Prerequisites	Department approval (Completion of 174 Credit Hours).	Level/Year	13-14/5

Students must be prepared for engineering practice through the curriculum culminating in a major design experience based on the knowledge and skills required in earlier course work and incorporating engineering standards and realistic constraints that take into account considerations such as: economic; environmental; safety; manufacturability; ethical; and social aspects. The objectives of this course where student can:

- Select and plan an engineering project involving analysis and design tasks
- Perform a literature survey
- Formulate, as a team, civil engineering design
- Perform the relevant calculations, analysis, and implement his design.
- Understand economic, environmental issues related to technology.
- Evaluate the impact of engineering on societal issues.
- Communicate technical information in writing.
- Communicate in oral and critically evaluate technical information

Teaching Method:Independent study/research, group discussion, meetings are scheduled with the supervisor for the particular project. Each students' group will meet together weekly, keeping detailed minutes of the meetings.

Course Learning Outcome:

- Ability to perform a literature survey
- Ability to formulate design an engineering project, by setting objectives that are appropriate for the project purpose and scope and that take into account the following aspects: economic; environmental; manufacturability; ethical; safety; social; and political.
- Ability to plan an engineering project involving multiple tasks and contributors.
- Ability to identify, formulate and solve an engineering problem.
- Ability to work effectively on a team to complete the project.
- Ability to implement, evaluate, and document a project design.
- Ability to communicate technical information in writing.
- Ability to communicate technical information in oral presentations.
- Recognize the need for a lifelong learning.
- Ability to use modern tools in engineering solving problems

Topic Covered	1. Literature survey 2. Engineering design 3. Proposals
	4. Project planning, budgeting, and management 5.
	Professionalism, ethics 6. Technical reports 7. Oral
	presentations
Text Book (s):	·

Varies with the particular project.	
Reference Materials:	
• Varies with the particular project.	
Mode of Evaluation:	
Student progress and project product:(Assessed by the supervisor(s)):	25
Log book (Assessed by the supervisor (s))	5
Professional Conduct includes (Assessed by the supervisor(s)):	20
 Cooperation with the project group 	
 Alignment with the code of ethics 	
 Attendance in discussion sessions with supervisor 	
Project Report	20
Presentation and defense (assessed by at least two panel members and the supervisor(s))	30
Total	100

Course Ground Rules

The following department rules will be applied:

- The deadline for submitting a hard copy of the project report is one week before the presentation.
- If student does not submit the report on time, a 25% of the report grade will be deducted for every day delay.
- If no report is submitted 24 hours before the presentation, a grade F will be given to the whole project.
- Other additional rules by the supervisor

Course Title	Industry and the Environment	Coordinator			
Course Code	561-CE-3	Credit Hrs.	3	Contact Hrs.	3
Prerequisites	None	Level/Year		15/5	

- To know the basics of Environment and environmental balances.
- To acquire knowledge of the pollution sources and types.
- To acquire the understanding of the Environmental Monitoring Technology and methods used to control the industry pollutions.

Teaching Method:Lectures; Training exercises (Tutorial, Quizzes and Assignment questions)

Expected Learning Outcome:

- CLO-1: Ability to acquaint with the basic principles of Industry and Environment.
- CLO-2: Ability to identify, formulate, and solve Industry and Environment problems
- CLO-3: Ability to understand the basic principles of Industry and Environment.
- CLO-4: Ability to acquire the skills to use some of the software used in the calculations of Industry and Environment problems
- CLO-5: To define the professional and ethical responsibility in the design of Industry and Environment systems

Course Contents:			
	Introduction to Environmental		
Unit 1: Introduction	Environmental Balance		
	Environment Affects by Industry activities		
	Pollution Types (Water Pollution; Air Pollution; Soil		
Unit II: Pollution type,	and Land Pollution)		
Sources and Effects	Water Pollution: Types, Sources and Effects		
	Air Pollution: Types, Sources and Effects		
	Soil/Land Pollution: Types, Sources and Effects		
Unit III: Pollution Control	Water Pollution Control Techniques		
	Air Pollution Control Techniques		
Techniques	Soil/Land Pollution Control Techniques		
	Environmental Monitoring Technology		
Unit IV: Pollution Problem	Pollution Problems from Industry and Engineering		
Omi IV. Fonduon Problem	fields		

Text Book (s):

• J.Glynn Henry, Gary W. Heinke, 'Environmental Science and Engineering', 2nd edition. Prentice Hall, 1996, (Reprint 2014)

- Mid-Term Tests (Not less than two Exams.) (30 %)
- A Tutorial, assignments and Quizzes...... (20 %)
- Final Exam. (50 %)

Course Title	Construction Engineering	Coordinator			
Course Code	582-CE-3	Credit Hrs.	3	Contact Hrs.	3
Prerequisites	None	Level/Year		15/5	

- Understand and know the construction methods of engineering projects.
- Evaluate the digging works, quantities, handling and productivity.
- Productivity of engineering projects.
- Study and apply the construction contract and economics.
- Gain skills in design of reinforced concrete forms and shores for different types of construction projects.

Teaching Method:

- Lectures.
- Training exercises

Expected Learning Outcome:

CLO-1 To describe the construction methods for projects

CLO-2 To record the knowledge of societal, health, safety, legal, management, sustainability and cultural issues, and the consequent responsibility related to construction engineering

CLO-3 To analyze the construction contract components

CLO-4 To design reinforced concrete, frameworks, forms and shores, for different type of construction projects

CLO-5 To demonstrate good oral communication skills in construction site

Course Contents:	
Unit 1:	 Introduction to construction engineering.
	Construction economics.
Unit II:	Construction projects contracts.
Unit III:	Digging quantity evaluation.
	 Filling and flatting works.
Unit IV:	Equipment recourses.
	 Handling and productivity evaluations.
Unit	• Design of R.C. forms.

Text Book (s):

• Robert Peurifoy and Clifford J. Schexnayder and Aviad Shapira and Robert Schmitt, "Construction planning, equipment & Methods", McGraw Hill, 8th Edition, 2010

Reference Book (s):

- S.W. Nunnaly," Construction Methods and Management", Prentice-Hall, Inc., 7th Edition, 2006.
- Richard Clough, "Construction Contracting: A Practical Guide to Company Management", Wiley; 7th Edition, 2005.

- Mid-Term Tests (Not less than two Exams.) (40 %)
- Final Exam. (50 %)

Course Title	Computer Aided Design	Coordinator			
Course Code	502-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	422-CE-4, 425-CE-3, 413-CE-5	Level/Year		14/5	
Elective Track		Structural Engi	inee	ring	

Computer Aided Design (CAD) will introduce students to the basics of CAD utilizing software to produce civil engineering designs. The course will also provide an overview of the Civil Engineering projects including Steel and Reinforced Concrete (RC) structures. The CAD will give opportunity to develop structural models, analysis, interpret, design and present final plans of civil constructions.

Teaching Method:

Lectures, Software based labs, group discussion, small projects

Expected Learning Outcome:

After the completion of this course, it is expected that the student be able to:

CLO-1: To enhance knowledge about design steps of Civil Engineering structures

CLO-2:To model and design steel structures using softwares based on realistic constraints

CLO-3: To design and solve Reinforced Concrete structures problems using softwares

CLO-4: To analyze and interpret results of the software

CLO-5:To produce professionally and ethically calculation notes and final plans of construction using softwares

Course Contents:	
Unit 1: Introduction to CAD	History and overview of CAD- advantages of CAD over manual drafting and design – hardware requirements – computers and workstation, an overview of CAD software
Unit II: CAD of Steel buildings	Review of design steps of a steel building Different types of steels buildings Modeling Model a Steel structure using CAD software Structural analysis of steel building Interpretation of results Design using CAD software Application on a real project of steel building
Unit III: CAD of Reinforced Concrete buildings	Design steps of a Reinforced Concrete (RC) building Different types of RC buildings Modeling of an RC structure using CAD software Structural analysis of steel building Interpretation of results Design using CAD software Application on a real project of steel building
Unit IV: Presentation of calculation reports and final plans of construction	Calculation notes Interaction between drafting and design software Presentation of final plans of construction Presentation of details Professional ethics about final construction documents

Text Book (s):

• Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.

Reference Book (s):

- Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi publications Pvt. Ltd 2003.
- Manual of Robot Structural Analysis Professional. Autodesk 2017
- Manual of Sab 2000. Computers and Structures Inc Edition (2017)

· ··· · · · · · · · · · · · · · · · ·	
• Mid-Term Tests (Not less than two Exams)	(20 %)
• Quizes and Assignments	(10 %)
• Labs, quizzes and Assignments	(20 %)
• Final Exam.	(50 %)

Course Title	Advanced Reinforced	Coordinator			
	Concrete Design				
Course Code	503-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	501-CE-5	Level/Year		14/5	
Elective Track		Structural Engineering			

To impart knowledge about the design of reinforced concrete structures

Teaching Method:

Lectures, Training exercises (Tutorial, Quizzes and Assignment questions)

Expected Learning Outcome:

- CLO-1: To define the in-depth fundamental knowledge on the reinforced concrete design of complex civil engineering structures.
- CLO-2: To calculate the various design factors responsible for economical design of pre-stressed concrete structures.
- CLO-3: To analyze the unknown bending moments and shear forces fort the reinforced concrete frame structures in static method of analysis.
- CLO-4: To demonstrate the applications of advanced design methods in life long applications of reinforced concrete design.
- CLO-5 : To calculate the design of various structural elements using software applications and numerical methods

Course Contents:				
Unit 1:	Production of PSC			
Introduction to	Post- tensioning PSC			
behavior of	Pre-tensioning PSC			
prestressed concrete				
Unit II:	Properties of concrete and steel			
General design	Losses in prestressed concrete			
principles	Calculation of prestressing forces			
Unit III:	Design of continuous prestressed beams against flexure			
prestressing elements	Design of continuous prestressed beams against shear			
	Details of reinforcement			
	Calculation seismic loads			
Unit IV: • Analysis of structures against seismic loads				
seismic loads	Design of shear walls			
scisinic loads	Details of reinforcement			
	Using computer software in design			
	Types of water tanks			
Unit V:	Calculation lateral loads			
	 Design of ground tanks 			
Design of water tanks • Design of elevated tanks				
	Details of reinforcement			

Text Book (s):

 Mashhour Ghoneim, Mohmoud EL-Mihlmy, "Design of Reinforced Concrete Structures", 1th Edition, 2014, Vol. 2 and 3.

Reference Book (s):

- "ACI committee 318, 'Building Code Requirements for Reinforced concrete" ACI 318-05),2005
- Arthur H. Nilson" Design of Concrete Structures" 13th Edition, McGraw Hill ,2002

Mid-Term Tests (Not less than two Exams.)	(30 %)
Practical Work and Assignments	(10 %)
Quizzes and E-learning	(10 %)
	(50.0/)

Course Title	Bridge Engineering	Coordinato	r		
Course Code	504-CE -4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	501-CE -5, 425-CE-5	Level/Year		15/5	
Elective Track		Structural Engineering			

- 1. To gain a comprehensive understanding of bridge loading
- 2. To develop a critical appreciation and comprehensive understanding of methods of idealization and analysis of bridge structures.
- 3. To develop a critical awareness of bridge inspection and assessment.

Teaching Method:

Lectures, Training exercises (Tutorial, Reports etc.)

Expected Learning Outcome:

- CLO-1: To recognize the thorough knowledge in the design of concrete bridges and apply conceptual design
- CLO-2: To develop theoretical knowledge and practical skills to create novel and innovative solutions to bridge engineering problems.
- CLO-3: To evaluate and asses the significant solutions to bridge design and provide analysis of complex design issues
- CLO-4: To evaluate the bridge design parameters autonomously and perform multidisciplinary tasks with leadership capabilities.
- CLO-5: To calculate the design of various structural elements using software applications and numerical methods

Course Contents:	
Unit 1: Introduction	Load Distribution Theory - loading standards - Bridge slabs Effective width method - Pigeaud's method - Bridge girders Courbon's method - Assumptions and analysis of a typical bridge floor - Hendry-Jaeger method - Morice - Little version of Guyon and Massonet method (principles only)
Unit II : Types of bridges	Slab Bridges - Straight and skew slab bridges - T beam bridges - Balanced cantilever bridges - Design of articulation - Continuous girder bridges
Unit III: Design of girders	Arch Bridges - Single span closed and open spandrel symmetrical type (structural arrangements and functions only) – Design of bow string girder bridges.
Unit IV: Composite bridges	Other Bridges - Box culvert (Single vent only) - Single span rigid frame bridges (Barrel of solid slab type only) - Pre- stressed composite T beam bridges (structural arrangements only)
Unit V: Design principles	Substructures - Design principles of Piers and abutments –

Bridge bearings - Hinges and expansion joints.

Text Book (s):

• Johnson Victor, D, (1999), Essentials of Bridge Engineering, Oxford Publishing Company.

Reference Book (s):

- 1. Jain and Jaikrishna (2000), Plain and reinforced concrete, Vol.2., Nem Chand Brothers.
 - 2. Standard specifications and code of practice for road bridges, (2005) IRC section I, II, III and IV. 3. The Concrete Association of India, (2000), Concrete Bridges.

- Mid-Term Tests (Not less than two Exams.) (40 %)
- Assignments + E-Learning......(10 %)

Course Title	Foundations Engineering-2	Coordinator			
Course Code	521-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	424-CE-5	Level/Year		13/5	
Elective Track		Structural H	Engin	eering	

• This course spots on the advanced principles of foundations engineering and analysis of it. Using elastic and plastic methods in foundations analysis. Deep foundations and skin friction and types of piles.

Teaching Method:

Lectures, Training exercises (Tutorial + Labs, Reports etc.)

Expected Learning Outcome:

CLO1: To recognize the basic principles of foundations engineering for civil engineer.

CLO-2: To design of different Deep foundations like Piles, piers, retaining structure and caissons.

CLO3: To develop deep foundations models using the techniques, skills and modern engineering tools.

CLO-4: To solve spatial problems concerning engineering foundations.

CLO-5: To demonstrate contemporary issues of deep foundations.

Course Contents:	
Unit 1:	Allowable settlement in the structures.
Introduction	 Rigid and flexible foundations.
Unit II:	Combined and raft foundations
Shallow foundations	
	Piles foundations
Unit III:	 Positive and negative skin friction
Deep foundations	 Group actions of piles foundations
	• Piles cap
Unit IV:	Sheet piles wall.
Retaining structure	 Design of retaining wall.

Text Book (s):

• Das, B.M., "Principles of Foundation Engineering", Thomson-Brooks/Cole 6th Edition, 2007.

Reference Book (s):

• Bowles, J. E.," Foundation Analysis and Design", McGraw-Hill Bool Co., U.S.A, 5th Edition, 1996.

- Practical Work(10 %)
- Assignments + E-Learning......(10 %)

Course Title	Environmental Engineering	Coordinator			
Course Code	562-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	322-CE-5	Level/Year		13/5	
Elective Track		Water & Environmental Engineerin			ring

To impart knowledge about the basic principles of Environmental Engineering and train them with the design concept of water and sewerage network system design.

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

- CLO-1: Ability to acquaint with the basic principles of Environment Engineering system.
- CLO-2: Ability to identify, formulate, and solve Environment Engineering problems.
- CLO-3: Ability to understand the basic principles of Environment Engineering.
- CLO-4: Ability to acquire the skills to use some of the software used in the calculations of Environment Engineering.

CLO-5: To define the professional and ethical responsibility in the design of Environment Engineering problems.

Course Contents:	
Unit 1: Introduction to Environmental Engineering	 Environmental Engineering: An Overview Practical aspects of Environmental Engineering Thrust problems in Environmental Engineering Water and waste water concepts Use of chemicals and water quality standards Water and waste water treatment techniques
Unit II : Introduction to Water Supply System	 Water supply systems: An Overview Types of water supply systems Allocation of source of water Allocation of water needs Use of software in water distribution system network analysis
Unit III: Design of water treatment system	 Design of screens Design of sedimentation tank Design of flocculation Design of filters Design for disinfection
Unit IV: Design of sewerage treatment system Unit V:	 Flow diagram of sewage treatment systems Dissolve oxygen model and its use DO,BOD and COD Design of sewage treatment processes Concepts of reuse

Reuse techniques and	•	End products of treatment and their use
computer application	•	Use of sludge
in Environmental		Software used in Environmental system analysis and design
Engineering		
Standard Code and	•	ACI-1008
Ethics use		

Text Book (s):

- Peavy, Rowe and Tchobanoglous, "Environmental Engineering", McGraw-
- Hill, Last Edition, 1985 (Reprint 2015)
- Warren Viessman, Jr., and Mark. J. Hammer, "Water Supply and Pollution Control", 7th Edition, Prentice Hall, 2004.

Reference Book (s):

- Mackenzie L. Davis and Davis A. Cornwell," Introduction to Environmental Engineering", McGraw-Hill, 5th Edition, 2013.
- Metcalf & Eddy, "Wastewater Engineering: Treatment and Reuse", McGraw-Hill, New York., USA, 4th Edition, 2003.

• Mid-Term Tests (Not less than tw	vo Exams.)	(30 %)
• Practical Work and Assignments		
e e e e e e e e e e e e e e e e e e e		` /
Ei., -1 E		(50.0/)

Course Title	Groundwater Engineering	Coordinator			
Course Code	563-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	322-CE-5, 423-CE-5	Level/Year		14/5	
Elective Track		Water & Envi	ronn	nental Engineeri	ng

To impart knowledge about the basics of hydrology and ways to manage and account movement, rules and fundamental equations, wells, pumping, mathematical models in hydrology, the use of computers.

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

- 1. To Describe the nature of groundwater and its role in the water cycle.
- 2. To explain Darcy's law and the groundwater flow equation.
- 3. To analyze the technology of water wells and groundwater monitoring.
- 4. To demonstrate the tools and techniques for groundwater modeling
- 5. To assess the nature of groundwater contaminant transport including the phenomena of diffusion, dispersion, and advection.
- 6. To calculate direct and inverse well problems in confined, leaky, and unconfined aquifers.

Course Contents:	
Unit 1:	• Introduction to Groundwater Engineering: An Overview
Introduction to	• Reservoirs (geological)-bearing water, groundwater
Groundwater	• Groundwater movement
Engineering	
	• The rules and fundamental equations
Unit II:	Wells Hydraulics
Groundwater	• Test the reservoir underground and Network analysis of
Analysis	groundwater flow
	• Pumping test and assess the hydraulic characteristics.
Unit III:	Groundwater quality parameters
Groundwater Quality	• Water quality standards (WHO,FAO)
Groundwater Quarity	Management of water quality
Unit IV:	Use of RS and GIS in Groundwater Engineering
The Use of Software	• Use of Modflow in Groundwater Engineering
in Groundwater • Case studies and real life application	
Engineering	Solute transports in Groundwater Engineering

Text Book (s):

David K. Todd, and Larry W. Mays, "Groundwater Hydrology", Wiley; 3rd Edition, 2005.

Reference Book (s):

• McWhorter and Sunada, "Groundwater Hydrology", Bertran Books Ltd, 2005

Mode of Evaluation:• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work and Assignments(20 %)• Quizzes and E-learning(10 %)• Final Exam.(50 %)

Course Title	Open Channel Hydraulics	Coordinator			
Course Code	564-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	322-CE-5	Level/Year		14/5	
Elective Track	Water & Envi	ronn	nental Engineeri	ng	

To impart knowledge about the advanced key concepts of fluid flow in open channels under different conditions with the study and control devices in the channel and the changes resulting from the stations where the transition.

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

CLO-1: Ability to acquaint with the basic principles of fluid flow in pipes and open channels.

CLO-2: Ability to identify, formulate, and solve engineering problems

CLO-3: Ability to understand the basic principles of open channel flow.

CLO-4: Ability to acquire the skills to use some of the software used in the calculations of water distribution networks.

CLO-5: To define the professional and ethical responsibility in the design of open channels.

Course Contents:	
Unit 1: Flow in the Open Channels	 Flow in open channels: An Overview The concept of energy The main equations of motions in channel
Unit II: Change of Flow condition in Open Channel	 Problem of change in transition in Channel Critical, subcritical and supercritical flow Formation of hydraulic jumps Analysis of hydraulic jumps Energy dissipations
Unit III: Resistance to flow in open channel	Roughness coefficient of channel bedsTypes of surface flow
Unit IV: Control devices in open channel flow	 Types of control devices Design of the control devices Operation and maintenance of control devices and open channel.
Unit V: Software used in the open channel design	HEC-RAS softwareMIKE series of software

Text Book (s):

• Featherstone, R. E.," Civil Engineering Hydraulics", Blackwell Science, 2009.

Reference Book (s):

• Sturm, Terry W, Open channel hydraulics, McGraw-Hill, 2nd Edition, 2010

Mode of Evaluation:• Mid-Term Tests (Not less than two Exams.)(30 %)• Practical Work and Assignments(20 %)• Quizzes and E-learning(10 %)• Final Exam.(50 %)

Course Title	Remote Sensing of the	Coordinator			
	Environment				
Course Code	565-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	224-CE-5, 324-CE-6	Level/Year		15/5	
Elective Track	Water & Environmental Engineering			ng	

To impart knowledge about the basics of remote sensing systems and how to interpret aerial photographs, digital images, using the computer.

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

CLO-1: Define and explain the key concepts and terminology used in remote sensing.

CLO-2: Conversant with the b

asic principles of remote sensing and its various fields of application

- CLO-3: Conduct basic to intermediate remote sensing analyses (atmospheric and geographic corrections, spectral transformations and enhancements, classification, modeling and change detection)
- CLO-4: Apply the underlying principles of interpreting image data
- CLO-5: Carry out the most commonly used Digital Image manipulation, Image Filtering and image enhancement approaches, and explain their uses and applications
- CLO-5: Explain examples of the use of remote sensing data to detect and quantify environmental change
- CLO-6: Explain image clustering approaches, and to be able to apply them to semiautomatically classify spectral data in order to generate your own thematic maps
- CLO-7: Able to use image processing software to process remote sensing data
- CLO-8: Critically examine the tradeoffs between spatial, spectral, radiometric and temporal resolution of remotely sensed data;
- CLO-9: Evaluate applications of remotely sensed data for monitoring and managing water and terrestrial resources.

Course Contents:				
Unit 1: Introduction to Fundamentals of remote sensing systems	 Fundamentals of remote sensing Electromagnetic Radiation, Terms and Definitions, Laws of Radiation, EM Spectrum, Sources of EMR. 			
Unit II: Imaging multi-spectrum and thermal infrared	 Earth Observation Satellites (LANDSAT, SPOT, IRS, IKONOS) and their characteristics Remote Sensing Systems - Active and Passive 			

	Systems, Imaging and Non Imaging Systems,			
	Principles of Thermal Remote Sensing including its			
	uses			
Unit III:	• Concept of Resolutions in RS - Spatial, Spectral,			
Digital images of the	Radiometric and Temporal of Landsat and SPOT			
Landsat satellites of				
America and the satellite				
SPOT-French				
	• Satellite data interpretation – Visual Interpretation and Digital Interpretation			
Unit IV:	Ground truth data collection			
Digital image processing	• Spectral Reflectance, Physical basis of spectral			
applications with computer	signatures of the objects and Spectral Signature for			
	Vegetation, Soil, Water and Snow			
	Application of Remote Sensing			
Text Book (s):				
• John R. Jensen, "Remote S	ensing of the environment", Pearson, 2 nd Edition, 2011.			
Reference Book (s):				
• Campbell, James , Introdu	ction to remote sensing, Guildford Press, 4th Edition, 2008			
• Floed F. Sabins, "Remote	Sensing: Principles and Interpretation", Prentice Hall, 7th			
Edition, 2005.				
Mode of Evaluation:				
• Mid-Term Tests (Not less than two Exams.)				
• Practical Work and Assignments				
• Quizzes and E-learning	(10 %)			
• Final Exam	(50 %)			

Course Title	Advanced Geographic Information System: (Advanced GIS)	Coordinator			
Course Code	541-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	324-CE-6	Level/Year 13/5			
Elective Track Transportation Engineering		ngineering			

To impart knowledge about the main Geo-database, Geo-processing, Analyzing network, Geo-coding, modeling, and how to use Arc GIS

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

CLO-1: Understand the importance of the geographical characteristics of data.

CLO-2: Describe the theory, acquisition, analysis and interpretation of geographical data across a range of applications.

CLO-3: Perform sophisticated raster and vector GIS analysis in a GIS environment

CLO-4: The application of geographic information science for the understanding of social and economic problems and environmental management

CLO-5: Understand the ways in which geographical data of various types can be combined, interpreted and modelled.

CLO-6: Analyze and critically interpret secondary geographical data.

CLO-7: Use appropriate techniques, including computer software, to produce clear diagrams and maps.

CLO-8: Develop a broad appreciation of spatial and network analysis techniques and application areas

CLO-9: Explore and solve spatial problems using GIS techniques and technology

CLO-10: Demonstrate understanding of the structure, advantages and limitations of raster datasets

CLO-11: Produce fluent and comprehensive written reports on complex topics.

Course Contents:	
	Data Models
Unit 1:	 Conceptual Model of Spatial Information
Geo-database	 Concept of databases
	Geodatabase Creation
Unit II:	• Highlight the spatial relationships between the datasets,
Geo-processing	including clip, buffer, dissolve and spatial join
Unit III:	 Creating a network dataset
Analyzing network	 Creating a multimodal network dataset

	Finding the best route using a network dataset
Unit IV: Data entry and Preparation	Spatial data input
	Data Preparation
	Data transformation
	Advance operations on continuous field raster
	Classification of analytical GIS capabilities
Unit V: Spatial data analysis	Retrieval, Classification and Measurement
	Overlay functions: Vector overlays and Raster overlays
	operators

Text Book (s):

• C.P. Lo, Albert Yeung, 'Concepts and Techniques of Geographic Information Systems, 2nd edition, 2014.

Reference Book (s):

- Paul A. Longley, Geographic Information Systems & Science, , 3rd edn, Wiley, New York, 2011
- Maguire, D. J., GIS, spatial analysis, and modeling, ESRI Press, 1st Edition, 2005

- Quizzes and E-learning(10 %)

Course Title	Traffic Engineering	Coordinator			
Course Code	542-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	421-CE-6	Level/Year		14/5	
Elective Track	lective Track Transportation Engineering				

- To impart knowledge about the components of traffic system and specifications of traffic flow
- To prepare the student to conduct the traffic field survey to manage the traffic flow

Teaching Method:

Lectures, Training exercises (Tutorial + Reports for different topics in this field)

Expected Learning Outcome:

CLO-1 To define the fundamental of traffic component system.

CLO-2: To design intersection of road

CLO-3:To solve rush hour problem under realistic constrains and interpret results

CLO-4 To define the professional and ethical responsibility in the design of Intersection

CLO-5 To demonstrate written communication skill effectively

Course Contents:	
	Introduction to traffic engineering system
	Traffic flow specifications
Unit 1:Traffic Engineering	Traffic engineering studies
	Cars parking
	Pedestals
	Traffic engineering safety
Unit II: Traffic Safety and	Road alignments
Traffic Management	Street capacities and intersections
	Rush hours traffic flow managements

Text Book (s):

• Roger P. Roess, William R. McShane & Elena S. Prassas," Traffic Engineering", Prentice-Hall, Inc., New Jersey, 3rd Edition, 2004.

Reference Book (s):

• Wright Paul, "Highway Engineering", 7th edition, John Wiley and Sons, Inc, USA 2004.

• Mid-Term Tests (Not less than two Exams.)	(30 %)
Practical Work	(10 %)
• Assignments + E-Learning	(10 %)
- Final Evam	(50.0%)

Course Title	Highway Design and Construction	Coordinator			
Course Code	543-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	421-CE-6	Level/Year		14/5	
Elective Track		Transportation	Eng	gineering	

- To understand the basics of highway planning and design.
- To understand the properties of road aggregate and bitumen.
- To have the skills of road design and its execution.

Teaching Method: Lectures, Power point presentations / Video Lectures and Labs & Training exercises.

Expected Learning Outcome:

CLO-1 To outline highways engineering principles and concepts and define the properties of highway materials.

CLO-2 To recognize safety, sustainability and consequent responsibility related to highway engineering.

CLO-3 To estimate experimentally the properties of highway materials and interpret results.

CLO-4 To solve highway engineering problems including drainage and maintenance

CLO-5 To design the geometric properties of the roads, the thickness of pavement layers and the percentage of bituminous materials.

Course Contents:	
Unit 1: Highway geometric design	 Introduction to standard engineering design. Geometric section elements. Sight distances, planning of horizontal and vertical highway curves. Intersection design
Unit II: pavement materials testing	 Introduction to pavement types and layers properties of materials Characteristics of subgrade soil
Unit III: Structural design	Introduction to flexible pavement structural design using AASHTO method
Unit IV: Mix design	 Introduction to Marshal Stability bitumen mix design.
Unit V: Maintenance	Drainage requirements.Retrofitting and maintenances highway pavement

Text Book (s): Wright Paul, "Highway Engineering", 7th edition, John Wiley and Sons, Inc, USA 2004.

Reference Book (s):

- "A policy on Geometric Design of Highways and Streets", Amer. Association of State Highway; 5th edition, 2004.
- AASHTO, "Guide for Design of Pavement Structures", Amer. Association of State

Highway and Transport Officials, Washington, D.C., 16 th ed., 1993.		
Mode of Evaluation:		
Mid-Term Tests (Not less than two Exams.)	(30 %)	
Experimental Works	(10 %)	
• Homework	. (10 %)	
Final Exam.	(50 %)	

Course Title	Pavement Design and	Coordinator			
	Material				
Course Code	544-CE-4	Credit Hrs.	4	Contact Hrs.	5
Prerequisites	312-CE-5, 421-CE-6	Level/Year		15/5	
Elective Track		Transportation	Eng	gineering	

To impart knowledge about the technology of asphalt in its several forms, the application using asphalt, understanding of asphalt properties, characteristics, testing procedures, and specifications, stress analysis, asphalt layers and axial load analysis in asphalt pavements.

Teaching Method:

Lectures, Training exercises (Tutorial, Labs, Quizzes and Assignment questions)

Expected Learning Outcome:

- CLO-1: To define the fundamentals of pavement construction and materials required for the flexible pavement design
- CLO-2: To apply the theoretical concepts for effective pavement design to determine the thickness.
- CLO-3: To solve and use the techniques, skills and appropriate methodology necessary for pavement construction engineering practices.
- CLO-4: To solve the different types of pavement problems required for different traffic conditions
- CLO-5: To define the professional and ethical responsibility in the design of rigid pavement for different types of subgrade conditions.

Course Contents:	
Unit 1:	Pavement Definition
Introduction to Pavement Design and Materials	• Types of pavement
	Structural aspects
Unit II : Soil Classification	• Soil an Introduction
	• Soil classification types
	• Use in the pavement Design
Unit III: Use of Asphalt	 Types of bitumen materials and its tests
	 Asphalt functions in road pavements
	 Design of asphalt mix using Marshal Method
Unit IV: Pavement Design	• Stress evaluation in asphalt pavements using "One layer
	theory"
	• Pavements layers
	• Equivalent axial load evaluations
	 AASHTO design for both rigid and flexible pavements

Text Book (s):

- Yoder, E.J. and Witczack, M.W., "Principles of Pavement Design", John Wiley & Sons, Inc., 2nd Edition. 1975, (reprint 2015)
- Lavin, Patrick G., Asphalt pavements: a practical guide to design, production and

maintenance for engineers and architects, Taylor & Francis, 2003

Reference Book (s):

- O'Flaherty, Coleman Anthony, Highways [electronic resource]: the location, design, construction and maintenance of road pavements, Butterworth-Heinemann, 2002.
- AASHTO, "Guide for Design of Pavement Structures", Amer. Association of State Highway and Transport Officials, Washington, D.C., 16th ed., 1993.

• Mid-Term Tests (Not less than two Exams.)	
Practical Work and Assignments	(20 %)
• Quizzes and E-learning	. (10 %)
• Final Exam.	. (50 %)