Kingdom of Saudi Arabia **Ministry of Higher Education** King Khalid University

College of Engineering / Elec. Dept.

المملكة العربية السعودية وزارة التعليم العالي جامعة الملك خالد

كلية الهندسة /قسم الهندسة الكهربانية

Power System Analysis Toolbox PSAT Software for Power System Education and Research

Power System Training

					_		PSAT	2.0. 0-b 1						×
File	Edi	i Run	Tools	Interf	aces	View	Options	Help						
	e 14	1	<u>R</u>	8	7	0	2 🥸		<u> 2</u>	3	1	1	?	
		Data Fi												
								5			Freq. Base	e (Hz)		
	Perturbation								100		Power Base			
						D			Starting Time (s)					
	Command								20		Ending Time (s)			
										18-	05	PF Toleral	nce	
	- F		eempty>						20			Max PF		
										1 e-	05	Dyn. Toler	rance	
										20		Max Dyn		
1	PSAT				Power Flow Continuation PF			Time Domain		Settings				
								Load System			Plo	t		
	Version 2.0.04 March 24, 200					Optimal PF			Save System			Close		
_														
	PSA	E versio	n 2.0.0-t	1, Co	pyright	(C) 20	02-2008	Faderico N	Ailano					

18-19-20 October 2015

PREPARED BY Dr. Abdelaziz Salah SAIDI

1. DESCRIPTION

PSAT is a Matlab toolbox for electric power system analysis and control. It is developed by Federico Milano and currently used in more than 50 countries. PSAT is a very exible and modular tool for power flow (PF), continuation power flow (CPF), optimal power flow (OPF), small signal stability analysis (SSSA) and time domain simulation. Additionally, a variety of static and dynamic models are provided.

2. TOPICS

The core of PAST is its power flow algorithm, which contains the initialization of state variables. After completing power flow, the following routines can be executed for further static and dynamic analyses.

- Continuation power flow (CPF);
- Optimal power flow (OPF);
- Small signal stability analysis (SSSA);
- Time domain simulations (TDS);

3. PURPOSE

To enable the students gain a fair knowledge on the programming and simulation of Electric Power Systems.

4. INSTRUCTIONAL OBJECTIVES

At the end of Lab the students will be able to acquire skills of using PSAT software for power system studies.

5. LIST OF EXPERIMENTS

- Introduction to Power System Analysis Toolbox.
- Creation of Networks and One-Line Diagrams.
- Running the Power Flow Program.
- Displaying Results.
- Saving Results.
- \succ Settings.
- Continuation Power Flow Analysis.
- Small Signal Stability Analysis.
- > Time Domain Simulation.
- Eigenvalues Analysis.
- ➢ Fault Analysis.
- Voltage Stability Analysis.
- Implementation of IEEE-14 BUS Test System With <u>Photovoltaic Generation</u>.

6. REFERENCE

a. F. Milano, "PSAT, Matlab-based Power System Analysis Toolbox," 2010, [Online]. Available: http:// www.power.uwaterloo.ca/~fmilano/.

b. Milano F (2005) An open source power system analysis toolbox. IEEE Trans Power Syst 20(3):1199–1206